YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có \(SA\bot \left( ABCD \right)\), SA=2a, ABCD là hình thang vuông tại A và D, \(AD=DC=\frac{1}{2}AB\). Góc giữa mặt phẳng \(\left( SBC \right)\) và mặt phẳng \(\left( ABCD \right)\) bằng \(45{}^\circ \). Tính thể tích khối chóp S.ABCD.

    • A. \(2{a^3}\)
    • B. \(\frac{{2\sqrt 3 {a^3}}}{3}\)
    • C. \({a^3}\)
    • D. \(\frac{{2{a^3}}}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi M là trung điểm của AB. Ta có \(AD=DC=\frac{1}{2}AB=CM\), suy ra \(\Delta ACB\) vuông tại C hay \(AC\bot BC\). Suy ra \(\widehat{\left( \left( SBC \right)\,,\,\left( ABCD \right) \right)}=\widehat{SCA}=45{}^\circ \).

    Suy ra \(AC=SA=2a \Rightarrow AD=DC=a\sqrt{2}, AB=2a\sqrt{2}\).

    Ta có \({{S}_{ABCD}}=\frac{1}{2}\left( AB+DC \right).AD =\frac{1}{2}\left( a\sqrt{2}+2a\sqrt{2} \right).a\sqrt{2}=3{{a}^{2}}\).

    Vậy \({{V}_{S.ABCD}}=\frac{1}{3}SA.{{S}_{ABCD}}=\frac{1}{3}.3{{a}^{2}}.2a=2{{a}^{3}}\).

    ATNETWORK

Mã câu hỏi: 261126

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON