-
Câu hỏi:
Gọi S là diện tích của ban công của một ngôi nhà có dạng như hình vẽ (S được giới hạn bởi parabol (P): \(y = a{x^2} + bx + c\,(a \ne 0)\) và trục Ox). Tìm S.
- A. \(S=\frac{9}{2}\)
- B. \(S=1\)
- C. \(S=\frac{4}{3}\)
- D. \(S=2\)
Đáp án đúng: C
Xét hàm số \(y = a{x^2} + bx + c\,(a \ne 0)\) có đồ thị là Parabol (P).
Các điểm (0;1), (-1;0), (1;0) thuộc (P) nên ta có:
\(\left\{ \begin{array}{l} c = 1\\ a - b + c = 0\\ a + b + c = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = - 1\\ b = 0\\ c = 1 \end{array} \right.\)
Vậy phương trình đường cong parabol là: \(y = - {x^2} + 1.\)
\(S = \int\limits_{ - 1}^1 {\left| {1 - {x^2}} \right|} dx = \int\limits_{ - 1}^1 {\left( {1 - {x^2}} \right)} dx = \left. {\left( {x - \frac{1}{3}{x^3}} \right)} \right|_{ - 1}^1 = \frac{4}{3}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Cho S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2x - {x^2} và trục hoành
- Diện tích hình phẳng giới hạn bởi các đường y=x^2-x, y=0, x=0 và x=2 được tính bởi công thức nào sau đây
- Một ôtô đang chạy với vận tốc 19 m/s thì người lái hãm phanh ôtô chuyển động chậm dần đều với vận tốc v(t)=-38t+19 m/s
- Người ta cần trồng hoa tại phần đất nằm phía ngoài đường tròn tâm gốc tọa độ O, bán kính bằng 1/sqrt2 và phía trong của Elip có độ dài trục lớn bằng 2sqrt2 và độ dài trục nhỏ bằng 2
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị y=x^2, trục hoành, trục tung và đường thẳng x=2
- Tính thể tích V của vật thể tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường thẳng y=3x, y=x, x=0 và x=1 quanh trục Ox
- Tìm m thuộc (0;5/6) sao cho hình phẳng giới hạn bởi đồ thị (C) và các đường thẳng x=0, x=2, y=0 có diện tích bằng 4
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị hai hàm số y = {x^3} - x và y = x - {x^2}
- Tính thể tích V của vật thể tròn xoay sinh ra khi cho hình phẳng giới hạn bởi đồ thị hàm số y = xsqrt {ln x}, trục hoành và đường thẳng x = e quay quanh Ox
- Tính diện tích S của hình phẳng giới hạn bởi đường cong (C):{y^2} - 1 - x = 0 và hai đường thẳng x=0, x=3