YOMEDIA
NONE
  • Câu hỏi:

    Cho \(x,\,\,y\) thỏa mãn \({\log _3}\dfrac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của biểu thức \(P = \dfrac{{3x + 2y - 9}}{{x + y - 10}}\) khi \(x,\,\,y\) thay đổi. 

    • A. 2
    • B. 3
    • C. 1
    • D. 0

    Lời giải tham khảo:

    Đáp án đúng: A

    \(\begin{array}{l}{\log _3}\dfrac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\\ \Leftrightarrow {\log _3}\left( {x + y} \right) - {\log _3}\left( {{x^2} + {y^2} + xy + 2} \right) + 2 = {x^2} + {y^2} + xy + 2 - 9x - 9y\,\,\left( {x + y > 0} \right)\\ \Leftrightarrow {\log _3}\left( {9x + 9y} \right) + \left( {9x + 9y} \right) = {\log _3}\left( {{x^2} + {y^2} + xy + 2} \right) + {x^2} + {y^2} + xy + 2\,\,\left( * \right)\end{array}\)

    Xét hàm số \(f\left( t \right) = {\log _3}t + t\,\,\left( {t > 0} \right)\) ta có \(f'\left( t \right) = \dfrac{1}{{t\ln 3}} + 1 > 0\,\,\forall t > 0 \Rightarrow \) Hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

    Từ \(\left( * \right) \Rightarrow f\left( {9x + 9y} \right) = f\left( {{x^2} + {y^2} + xy + 2} \right) \Leftrightarrow 9x + 9y = {x^2} + {y^2} + xy + 2\)

    \( \Leftrightarrow 9\left( {x + y} \right) = {\left( {x + y} \right)^2} - xy + 2 \Leftrightarrow xy = {\left( {x + y} \right)^2} - 9\left( {x + y} \right) + 2\)

    Ta có: \(x = x + xy - xy = x\left( {y + 1} \right) - xy \le {\left( {\dfrac{{x + y + 1}}{2}} \right)^2} - xy\) \( \Rightarrow xy \le {\left( {\dfrac{{x + y + 1}}{2}} \right)^2} - x\)

    Từ đó \(xy = {\left( {x + y} \right)^2} - 9\left( {x + y} \right) + 2 \le {\left( {\dfrac{{x + y + 1}}{2}} \right)^2} - x\) \( \Leftrightarrow x \le {\left( {\dfrac{{x + y + 1}}{2}} \right)^2} - {\left( {x + y} \right)^2} + 9\left( {x + y} \right) - 2\)

    Đặt \(t = x + y > 0\) thì

    \(\begin{array}{l}P = \dfrac{{x + 2\left( {x + y} \right) - 9}}{{x + y + 10}} = \dfrac{{x + 2t - 9}}{{t + 10}} \le \dfrac{{\dfrac{{{{\left( {t + 1} \right)}^2}}}{4} - {t^2} + 9t - 2 + 2t - 9}}{{t + 10}}\\ = \dfrac{{{t^2} + 2t + 1 - 4{t^2} + 44t - 44}}{{4t + 40}} = \dfrac{{ - 3{t^2} + 46t - 43}}{{4t + 40}}\end{array}\)

    Xét hàm số \(f\left( t \right) = \dfrac{{ - 3{t^2} + 46t - 43}}{{4t + 40}}\,\,\left( {t \ne 10} \right)\).

    Sử dụng MTCT ta tìm được \(\max P = 2\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 357887

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON