YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp \(S.ABCD\) đáy là hình thoi tâm \(O\) và \(SO \bot \left( {ABCD} \right)\), \(SO = \dfrac{{a\sqrt 6 }}{3},\,\,BC = SB = a\). Số đo góc giữa 2 mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right)\) là: 

    • A. \({90^0}\)    
    • B. \({60^0}\) 
    • C. \({30^0}\)  
    • D. \({45^0}\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(M\) là trung điểm của \(SC\).

    Tam giác \(SBC\) cân tại \(B \Rightarrow BM \bot SC\).

    Xét tam giác \(SBD\) có \(SO\) là trung tuyến đồng thời là đường cao \( \Rightarrow \Delta SBC\) cân tại \(S \Rightarrow SB = SD = a\).

    \(\Delta SCD\) có \(SD = CD = a \Rightarrow \Delta SCD\) cân tại \(D \Rightarrow DM \bot SC\).

    Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {SCD} \right) = SC\\\left( {SBC} \right) \supset BM \bot SC\\\left( {SCD} \right) \supset DM \bot SC\end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {BM;DM} \right)\).

    Xét chóp \(B.SAC\) ta có \(BC = BS = BA = a \Rightarrow \) Hình chiếu của \(B\) lên  \(\left( {SAC} \right)\) trùng với tâm đường tròn ngoại tiếp \(\Delta SAC\).

    Ta có \(\left\{ \begin{array}{l}BO \bot AC\,\,\left( {gt} \right)\\BO \bot SO\,\,\left( {SO \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BO \bot \left( {SAC} \right) \Rightarrow O\) là tâm đường tròn ngoại tiếp \(\Delta SAC\).

    \( \Rightarrow \Delta SAC\) vuông cân tại \(S \Rightarrow AC = 2SO = \dfrac{{2a\sqrt 6 }}{3} \Rightarrow SA = SC = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{{2a\sqrt 3 }}{3}\).

    Xét tam giác vuông \(OAB\) có \(OB = \sqrt {A{B^2} - O{A^2}}  = \sqrt {{a^2} - \dfrac{{2{a^2}}}{3}}  = \dfrac{{a\sqrt 3 }}{3}\)\( \Rightarrow BD = 2OB = \dfrac{{2a\sqrt 3 }}{3}\).

    Xét tam giác vuông \(BCM:\,\,BM = \sqrt {B{C^2} - M{C^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt 6 }}{3} = DM\).

    Áp dụng định lí Cosin trong tam giác \(BDM\) ta có:

    \(\cos \angle BMD = \dfrac{{B{M^2} + D{M^2} - B{D^2}}}{{2BM.DM}} = \dfrac{{\dfrac{{2{a^2}}}{3} + \dfrac{{2{a^2}}}{3} - \dfrac{{4{a^2}}}{3}}}{{2.\dfrac{{2{a^2}}}{3}}} = 0 \Rightarrow \angle BMD = {90^0}\).

    Vậy \(\angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = {90^0}\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 357729

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON