YOMEDIA
NONE
  • Câu hỏi:

    Cho khối tứ diện ABCD có thể tích bằng V. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2 NC, P thuộc cạnh AD sao cho PD = 3 AP. Thể tích của khối đa diện MNP.BCD tính theo V là

    • A. \(\dfrac{{21}}{{24}}V\)   
    • B. \(\dfrac{5}{6}V\)  
    • C. \(\dfrac{7}{8}V\)    
    • D. \(\dfrac{{11}}{{12}}V\)  

    Lời giải tham khảo:

    Đáp án đúng: D

     

    Ta có: \(\dfrac{{{V_{AMNP}}}}{{{V_{ABCD}}}} = \dfrac{{AM}}{{AB}}.\dfrac{{AN}}{{AC}}.\dfrac{{AP}}{{AD}} = \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{1}{4} = \dfrac{1}{{12}} \Rightarrow {V_{AMNP}} = \dfrac{1}{{12}}{V_{ABCD}}\).

    Mà \({V_{ABCD}} = {V_{AMNP}} + {V_{MNP.BCD}} \Rightarrow {V_{ABCD}} = \dfrac{1}{{12}}{V_{ABCD}} + {V_{MNP.BCD}}\).

    \( \Rightarrow {V_{MNP.BCD}} = \dfrac{{11}}{{12}}{V_{ABCD}} \Rightarrow {V_{MNP.BCD}} = \dfrac{{11}}{{12}}V\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 323068

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON