Câu hỏi trắc nghiệm (40 câu):
-
Câu 1: Mã câu hỏi: 322989
Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào ?
- A. \(y = \dfrac{1}{2}{x^4} - {x^2} - 3.\)
- B. \(y = {x^4} - 2{x^2} - 3.\)
- C. \(y = - \dfrac{1}{2}{x^4} + 2{x^2} - 3.\)
- D. \(y = - {x^4} + 2{x^2} - 3.\)
-
Câu 2: Mã câu hỏi: 322990
Cho hàm số \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right).\) Biết tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là khoảng \(\left( {a;b} \right).\) Tính \(S = a + 2b.\)
- A. \(S = - 1.\)
- B. \(S = 2.\)
- C. \(S = - 2.\)
- D. \(S = 1.\)
-
Câu 3: Mã câu hỏi: 322995
Số mặt phẳng đối xứng của một hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đôi một khác nhau là
- A. 6
- B. 4
- C. 3
- D. 9
-
Câu 4: Mã câu hỏi: 322996
Cho \(a,b\) là hai số thực dương. Tìm \(x\) biết \({\log _3}x = 3{\log _3}a - 2{\log _{\frac{1}{3}}}b.\)
- A. \(x = {a^3}{b^2}.\)
- B. \(x = {a^2}{b^3}.\)
- C. \(x = \dfrac{{{a^3}}}{{{b^2}}}.\)
- D. \(x = 3a + 2b.\)
-
Câu 5: Mã câu hỏi: 322998
Tính giá trị nhỏ nhất của hàm số \(y = \sqrt {4 - {x^2}} \) trên đoạn \(\left[ { - 1;1} \right].\)
- A. \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = \sqrt 3 .\)
- B. \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = 0.\)
- C. \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = 2.\)
- D. \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = \sqrt 2 .\)
-
Câu 6: Mã câu hỏi: 323001
Cho \(x\) là số thực dương và biểu thức \(P = \sqrt[3]{{{x^2}\sqrt[4]{{x\sqrt x }}}}.\) Viết biểu thức \(P\) dưới dạng lũy thừa của một số với số mũ hữu tỉ.
- A. \(P = {x^{\dfrac{1}{{432}}}}.\)
- B. \(P = {x^{\dfrac{{58}}{{63}}}}.\)
- C. \(P = {x^{\dfrac{{19}}{{24}}}}.\)
- D. \(P = {x^{\dfrac{1}{4}}}.\)
-
Câu 7: Mã câu hỏi: 323003
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD), góc giữa cạnh SD và mặt phẳng (ABCD) bằng \(60^\circ \). Thể tích của khối chóp đã cho bằng
- A. \(\sqrt 3 {a^3}\)
- B. \(\dfrac{{\sqrt 3 {a^3}}}{6}\)
- C. \(\dfrac{{\sqrt 3 {a^3}}}{3}\)
- D. \(\dfrac{{\sqrt 3 {a^3}}}{9}\)
-
Câu 8: Mã câu hỏi: 323004
Giá trị cực tiểu \({y_{c{\rm{r}}}}\) của hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 7\) là
- A. \({y_{c{\rm{r}}}} = 2\)
- B. \({y_{c{\rm{r}}}} = 3\).
- C. \({y_{c{\rm{r}}}} = 0.\)
- D. \({y_{c{\rm{r}}}} = 7\).
-
Câu 9: Mã câu hỏi: 323007
Biết rằng năm 2009 dân số Việt Nam là 85.847.000 người và tỉ lệ tăng dân số năm đó là 1,2%. Cho biết sự tăng dân số được ước tính theo công thức \(S = A{e^{Nr}}\) (A là dân số năm lấy làm mốc tính; S là dân số sau N năm; r là tỉ lệ tăng dân số hàng năm). Nếu cứ tăng dân số với tỉ lệ như vậy thì sau bao nhiêu năm nữa dân số nước ta ở mức 120 triệu người?
- A. \(26\) năm.
- B. \(27\) năm.
- C. \(28\) năm.
- D. \(29\) năm.
-
Câu 10: Mã câu hỏi: 323009
Cho \({\left( {\pi - 2} \right)^m} > {\left( {\pi - 2} \right)^n}\) với m n , là các số nguyên. Khẳng định đúng là
- A. \(m > n\) .
- B. \(m \le n\) .
- C. \(m \ge n\).
- D. \(m < n\).
-
Câu 11: Mã câu hỏi: 323012
Cho hàm số \(y = \dfrac{1}{3}{x^3} - {x^2} + (m - 1)x + 2019\). Giá trị nhỏ nhất của tham số m để hàm số đồng biến trên tập xác định là
- A. m = 2.
- B. \(m = - 2\)
- C. \(m = \dfrac{5}{4}\).
- D. m = 0.
-
Câu 12: Mã câu hỏi: 323018
Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\) . Có bao nhiêu tiếp tuyến của đồ thị hàm số song song với trục hoành?
- A. 2
- B. 3
- C. 0
- D. 1
-
Câu 13: Mã câu hỏi: 323019
Tìm số giao điểm của đồ thị hàm số \(y = \left( {1 - 2{\rm{x}}} \right)\left( {2{{\rm{x}}^2} - 5{\rm{x}} + 2} \right)\) với trục hoành.
- A. 2
- B. 3
- C. 0
- D. 1
-
Câu 14: Mã câu hỏi: 323021
Hình hai mươi mặt đều có mỗi đỉnh là đỉnh chung của số cạnh là
- A. 5
- B. 2
- C. 4
- D. 3
-
Câu 15: Mã câu hỏi: 323022
Cho hình lăng trụ ABCD. A’B’C’D’ có đáy là hình vuông cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với trung điểm của cạnh AB, góc giữa A’C và mặt phẳng (ABCD) bằng 450 . Thể tích của khối lăng trụ đã cho bằng
- A. \(\dfrac{{\sqrt 5 {a^3}}}{2}\) .
- B. \(\dfrac{{\sqrt 5 {a^3}}}{{12}}\).
- C. \(\dfrac{{\sqrt 5 {a^3}}}{6}\) .
- D. \(\dfrac{{3\sqrt 5 {a^3}}}{2}\).
-
Câu 16: Mã câu hỏi: 323024
Hình đa diện có các đỉnh là trung điểm tất cả các cạnh của một tứ diện đều là
- A. Bát diện đều.
- B. Hình lập phương.
- C. Tứ diện đều.
- D. Thập nhị diện đều.
-
Câu 17: Mã câu hỏi: 323028
Cho \({\log _2}3 = a;{\log _3}7 = b\) Biểu diễn \(P = {\log _{21}}126\) theo a, b.
- A. \(P = \dfrac{{ab + 2{\rm{a}} + 1}}{{ab + a}}\)
- B. \(P = \dfrac{{ab + 2{\rm{a}} + 1}}{{ab + 1}}\)
- C. \(P = \dfrac{{ab + 2a + 1}}{{b + 1}}\)
- D. \(P = \dfrac{{a + b{\rm{ + 2}}}}{{b + 1}}.\)
-
Câu 18: Mã câu hỏi: 323030
Trong các khẳng định sau, tìm khẳng định sai.
- A. Hàm số \(y = \log {\rm{x}}\)đồng biến trên \(\mathbb{R}\).
- B. Hàm số \(y = {\pi ^{ - x}}\)nghịch biến trên \(\mathbb{R}\).
- C. Hàm số \(y = {x^\pi }\)đồng biến trên \(\left( {0; + \infty } \right)\).
- D. Hàm số \(y = {e^x}\)đồng biến trên \(\mathbb{R}\).
-
Câu 19: Mã câu hỏi: 323031
Cho hàm số \(\dfrac{{2{\rm{x}} + 1}}{{x - 2}}\) . Tìm khẳng định sai.
- A. Đồ thị hàm số có hai đường tiệm cận.
- B. Hàm số nghich biến trên từng khoảng xác định.
- C. \(\mathop {\lim }\limits_{x \to {2^ - }} y = + \infty ;\mathop {\lim }\limits_{x \to {2^ + }} y = - \infty \).
- D. Hàm số không có cực trị.
-
Câu 20: Mã câu hỏi: 323032
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi M là trung điểm của SA. Thể tích của khối chóp M.ABC bằng
- A. \(\dfrac{{\sqrt {13} {a^3}}}{{12}}\)
- B. \(\dfrac{{\sqrt {11} {a^3}}}{{48}}\)
- C. \(\dfrac{{\sqrt {11} {a^3}}}{8}\)
- D. \(\dfrac{{\sqrt {11} {a^3}}}{{24}}\)
-
Câu 21: Mã câu hỏi: 323033
Cho hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ bên.
Khẳng định nào dưới đây là khẳng định đúng?
- A. ab < 0; ac > 0; bd > 0.
- B. ab > 0; ac > 0; bd > 0.
- C. ab < 0; ac > 0; bd < 0.
- D. ab> 0; ac < 0; bd > 0.
-
Câu 22: Mã câu hỏi: 323035
Tìm tập xác định của hàm số \(y = \log \left( {{x^3} - 3x + 2} \right)\)
- A. \(D = \left( { - 2; + \infty } \right)\)
- B. \({\rm{D}} = \left( { - 2; + \infty } \right)\backslash \left\{ 1 \right\}\)
- C. \(D = {\rm{[}} - 2; + \infty )\backslash \left\{ 1 \right\}\)
- D. \({\rm{D}} = \left( { - \infty ; - 2} \right) \cup \left( {1; + \infty } \right)\)
-
Câu 23: Mã câu hỏi: 323037
Đồ thị hàm số \(y = \dfrac{{x - 1}}{{\sqrt {3{{\rm{x}}^2} + 1} }}\) có bao nhiêu đường tiệm cận ngang?
- A. 3
- B. 0
- C. 2
- D. 1
-
Câu 24: Mã câu hỏi: 323041
Trong không gian cho hai điểm phân biệt A, B cố định. Tập hợp các điểm M thỏa mãn đẳng thức \(\overrightarrow {MA} .\overrightarrow {MB} = 0\) là
- A. Mặt cầu bán kính AB.
- B. Hình tròn bán kính AB.
- C. Mặt cầu đường kính AB.
- D. Hình tròn đường kính AB.
-
Câu 25: Mã câu hỏi: 323043
Cho \(0 < a \ne 1;0 < b \ne 1\) và x, y là hai số thực dương. Mệnh đề nào dưới đây đúng?
- A. \({\log _a}\dfrac{x}{y} = \dfrac{{{{\log }_a}x}}{{{{\log }_a}y}}\)
- B. \(\log _a^2\left( {xy} \right) = \log _a^2x + \log _a^2y\)
- C. \({\log _a}\dfrac{1}{x} = \dfrac{1}{{{{\log }_a}x}}\)
- D. \({\log _b}x = {\log _a}{x^{{{\log }_b}a}}\)
-
Câu 26: Mã câu hỏi: 323047
Tính đạo hàm của hàm số \(y = {2^{{x^2} - \sin x + 2}}\)
- A. \(y' = \left( {2x - \cos x} \right){2^{{x^2} - \sin x + 2}}\ln 2\)
- B. \(y' = {2^{{x^2} - \sin x + 2}}\ln 2.\)
- C. \(y' = \left( {{x^2} - \sin x + 2} \right){2^{{x^2} - \sin x + 1}}\)
- D. \(y' = \left( {2x - \cos x} \right){2^{{x^2} - \sin x + 2}}.\)
-
Câu 27: Mã câu hỏi: 323051
Thể tích của khối cầu đường kính 3R bằng
- A. \(\dfrac{{9\pi {R^3}}}{8}\)
- B. \(\dfrac{{27\pi {R^3}}}{8}\).
- C. \(\dfrac{{9\pi {R^3}}}{2}\).
- D. \(36\pi {R^3}\)
-
Câu 28: Mã câu hỏi: 323053
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, cạnh SA vuông góc với mặt phẳng (ABC), BC = a, SA = AB. Thể tích của khối chóp đã cho bằng
- A. \(\dfrac{{\sqrt 2 {a^3}}}{{24}}\).
- B. \(\dfrac{{\sqrt 2 {a^3}}}{8}\)
- C. \(\dfrac{{\sqrt 3 {a^3}}}{{24}}\)
- D. \(\dfrac{{\sqrt 3 {a^3}}}{8}\)
-
Câu 29: Mã câu hỏi: 323057
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = 4{{\rm{x}}^3} + m{{\rm{x}}^2} - 12{\rm{x}} + 5\) đạt cực tiểu tại điểm x = -2.
- A. Không tồn tại giá trị của m.
- B. \(m = \dfrac{3}{4}\)
- C. \(m = {\rm{ }}0.\)
- D. \(m = {\rm{ }}9.\)
-
Câu 30: Mã câu hỏi: 323058
Cho hàm số \(y = - {x^3} + 3{{\rm{x}}^2} + 2\). Tìm phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của đồ thị.
- A. \(y = 3{\rm{x}} + 1\)
- B. \(y = 3{\rm{x}} - 1\)
- C. \(y = - 3{\rm{x}} + 1\)
- D. \(y = - 3{\rm{x}} - 1\)
-
Câu 31: Mã câu hỏi: 323059
Cho hàm số \(y = \dfrac{{2{\rm{x}} + 1}}{{x - 1}}\). Khẳng định nào sau đây là đúng?
- A. Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
- B. Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
- C. Hàm số nghịch biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\)
- D. Hàm số nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\)
-
Câu 32: Mã câu hỏi: 323061
Trong các hình chóp tứ giác sau, hình chóp nào có mặt cầu ngoại tiếp
- A. Hình chóp có đáy là hình thang vuông.
- B. Hình chóp có đáy là hình thang cân.
- C. Hình chóp có đáy là hình bình hành.
- D. Hình chóp có đáy là hình thang.
-
Câu 33: Mã câu hỏi: 323063
Cho a, b là các số thực dương, m là một số nguyên và n là một số nguyên dương. Tìm khẳng định sai.
- A. \({a^{\dfrac{m}{n}}} = \sqrt[n]{{{a^m}}}\)
- B. \({a^{\dfrac{m}{n}}} = \sqrt[m]{{{a^n}}}\)
- C. \(\dfrac{{{a^m}}}{{{b^m}}} = {\left( {\dfrac{a}{b}} \right)^m}\)
- D. \({\left( {ab} \right)^m} = {a^m}{b^m}\)
-
Câu 34: Mã câu hỏi: 323064
Đồ thị hàm số nào sau đây có tiệm cận đứng là đường thẳng x = -2 ?
- A. \(y = \dfrac{{x + 1}}{{{x^2} - 4}}\)
- B. \(y = \dfrac{{x + 2}}{{{x^2} - 4}}\)
- C. \(y = \dfrac{{x + 2}}{{{x^2} + 4}}\)
- D. \(y = \dfrac{{x + 1}}{{{x^2} + 4}}\)
-
Câu 35: Mã câu hỏi: 323066
Cho hình chóp đều S.ABCD có cạnh đáy bằng 4cm và chiều cao bằng 2cm . Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng
- A. \(4,5cm.\)
- B. \(3cm.\)
- C. \(6cm.\)
- D. \(4cm.\)
-
Câu 36: Mã câu hỏi: 323068
Cho khối tứ diện ABCD có thể tích bằng V. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2 NC, P thuộc cạnh AD sao cho PD = 3 AP. Thể tích của khối đa diện MNP.BCD tính theo V là
- A. \(\dfrac{{21}}{{24}}V\)
- B. \(\dfrac{5}{6}V\)
- C. \(\dfrac{7}{8}V\)
- D. \(\dfrac{{11}}{{12}}V\)
-
Câu 37: Mã câu hỏi: 323071
Cho hàm số y = f(x) xác định và liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Khẳng định nào sau đây đúng?
- A. Hàm số đạt cực tiểu tại x =1.
- B. Hàm số đạt giá trị lớn nhất bằng 0, giá trị nhỏ nhất bằng -1.
- C. Hàm số có giá trị cực tiểu bằng 1.
- D. Hàm số có một cực trị.
-
Câu 38: Mã câu hỏi: 323073
Cho hàm số\(y = {x^4} - 2{{\rm{x}}^2} + 1\). Tìm khẳng định sai ?
- A. Hàm số đạt cực đại tại x = 0.
- B. Đồ thị hàm số nhận gốc tọa độ làm tâm đối xứng.
- C. Đồ thị hàm số nhận trục tung làm trục đối xứng.
- D. \(\mathop {\lim y}\limits_{x \to - \infty } = + \infty \).
-
Câu 39: Mã câu hỏi: 323074
Số điểm cực trị của hàm số \(y = - 2{{\rm{x}}^4} - {x^2} + 5\) là
- A. 1
- B. 3
- C. 2
- D. 0
-
Câu 40: Mã câu hỏi: 323076
Tìm điều kiện của tham số m để phương trình \(2{x^3} - 3{x^2} - 2m - 1 = 0\) có ba nghiệm phân biệt.
- A. \( - 1 < m < - \dfrac{1}{2}\)
- B. \(0 < m < \dfrac{1}{2}\)
- C. \( - 1 \le m \le - \dfrac{1}{2}\)
- D. \( - \dfrac{1}{2} < m < 0\)