YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = \dfrac{{2{\rm{x}} + 1}}{{x - 1}}\).  Khẳng định nào sau đây là đúng?

    • A. Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\)  và \(\left( {1; + \infty } \right)\) 
    • B. Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) 
    • C. Hàm số nghịch biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\) 
    • D. Hàm số nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

    Ta có: \(y' = \dfrac{{2.\left( { - 1} \right) - 1.1}}{{{{\left( {x - 1} \right)}^2}}} = \dfrac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0\,\,\forall x \in D\).

    Vậy hàm số đã cho nghịch biến trên \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

    Chọn A.

    Chú ý: Không kết luận hàm số nghịch biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\) hay nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\).

    ATNETWORK

Mã câu hỏi: 323059

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON