YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD đáy là hình thoi tâm O và \(SO \bot \left( {ABCD} \right),SO = \frac{{a\sqrt 6 }}{3},BC = SB = a\). Số đo góc giữa 2 mặt phẳng (SBC) và (SCD) là:

    • A. \(90^0\)
    • B. \(60^0\)
    • C. \(30^0\)
    • D. \(45^0\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi M là trung điểm của SC.

    Tam giác SBC cân tại \(B \Rightarrow BM \bot SC\).

    Xét tam giác SBD SO là trung tuyến đồng thời là đường cao

    \( \Rightarrow \Delta SBC\) cân tại \(S \Rightarrow SB = SD = a\) 

    \(\Delta SCD\) có \(SD = CD = a \Rightarrow \Delta SCD\) cân tại \(D \Rightarrow DM \bot SC\) 

    Ta có: \(\left\{ \begin{array}{l}
    \left( {SBC} \right) \cap \left( {SCD} \right) = SC\\
    \left( {SBC} \right) \supset BM \bot SC\\
    \left( {SCD} \right) \supset DM \bot SC
    \end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {BM;DM} \right)\) 

    Xét chóp B.SAC ta có \(BC = BS = BA = a \Rightarrow \) Hình chiếu của B lên (SAC) trùng với tâm đường tròn ngoại tiếp \(\Delta SAC\)

    Ta có \(\left\{ \begin{array}{l}
    BO \bot AC\,\,\left( {gt} \right)\\
    BO \bot SO\,\,\left( {SO \bot \left( {ABCD} \right)} \right)
    \end{array} \right. \Rightarrow BO \bot \left( {SAC} \right) \Rightarrow O\) là tâm đường tròn ngoại tiếp \(\Delta SAC\). 

      \( \Rightarrow \Delta SAC\) vuông cân tại \(S \Rightarrow AC = 2SO = \frac{{2a\sqrt 6 }}{3} \Rightarrow SA = SC = \frac{{AC}}{{\sqrt 2 }} = \frac{{2a\sqrt 3 }}{3}\) 

    Xét tam giác vuông OAB có \(OB = \sqrt {A{B^2} - O{A^2}}  = \sqrt {{a^2} - \frac{{2{a^2}}}{3}}  = \frac{{a\sqrt 3 }}{3} \Rightarrow BD = 2OB = \frac{{2a\sqrt 3 }}{3}\) 

    Xét tam giác vuông \(BCM:BM = \sqrt {B{C^2} - M{C^2}}  = \sqrt {{a^2} - \frac{{{a^2}}}{3}}  = \frac{{a\sqrt 6 }}{3} = DM\) 

    Áp dụng định lí Cosin trong tam giác BDM ta có:

    \(\cos \angle BMD = \frac{{B{M^2} + D{M^2} - B{D^2}}}{{2BM.DM}} = \frac{{\frac{{2{a^2}}}{3} + \frac{{2{a^2}}}{3} - \frac{{4{a^2}}}{3}}}{{2.\frac{{2{a^2}}}{3}}} = 0 \Rightarrow \angle BMD = {90^0}\) 

    Vậy \(\angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = {90^0}\) 

    ATNETWORK

Mã câu hỏi: 89092

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON