YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABC có mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d từ A đến mặt phẳng (SBC), biết \(BC = a\sqrt3\), AC = 2a.

    • A. \(d=a\sqrt3\)
    • B. \(d=\frac{{a\sqrt 6 }}{2}\)
    • C. \(d=\frac{{a\sqrt 2 }}{2}\)
    • D. \(d=\frac{{a\sqrt 3 }}{2}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Dễ thấy tam giác ABC vuông tại B \( \Rightarrow BC \bot (SAB) \Rightarrow (SAB) \bot (SBC)\), kẻ \(AH \bot SB \Rightarrow AH \bot (SBC)\)

    Vậy AH là khoảng cách từ A đến (SBC) , do AH là đường cao của tam giác đều ABC nên \(AH = \frac{{a\sqrt 3 }}{2}\)

      .

    ATNETWORK

Mã câu hỏi: 207275

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON