YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(f(x) = \frac{1}{4}{x^4} - m{x^3} + \frac{3}{2}({m^2} - 1){x^2} + (1 - {m^2})x + 2019\) với m là tham số thực; Biết rằng hàm số \(y = f\left( {\left| x \right|} \right)\) có số điểm cực trị lớn hơn 5 khi  \(a < {m^2} < b + 2\sqrt c \;\;\;(a,b,c\; \in R).\) Giá trị T = a + b + c bằng

    • A. 8
    • B. 5
    • C. 6
    • D. 7

    Lời giải tham khảo:

    Đáp án đúng: A

    Từ f(x) là hàm bậc 4 có nhiều nhất 3 cực trị , mà \(y = f\left( {\left| x \right|} \right)\) có nhiều hơn 5 cực trị , suy ra \(y = f\left( {\left| x \right|} \right)\) có đúng 6 cực trị , từ đó f(x) có đúng 3 cực trị dương , hay phương trình \(f'(x) = g(x) = 0\) có ba nghiệm dương phân biệt \( \Leftrightarrow g'(x)\) có hai nghiệm dương và \({g_{cd}}.{g_{ct}} < 0,g(0) < 0\)

    \(g'(x) = 0 \Leftrightarrow {x^2} - 2mx + {m^2} - 1 = 0 \Leftrightarrow {x_{cd}} = m - 1,{x_{ct}} = m + 1\)

    Nhận xét \({x_{cd}} > {x_1} > 0 \Rightarrow m > 1,g(0) < 0 \Rightarrow m > 1\)

    \({g_{cd}} = (m - 1)({m^2} - 3) > 0 \Rightarrow m > \sqrt 3\)

    \({g_{ct}} = (m + 1)({m^2} - 2m - 1) < 0 \Rightarrow m < 1 + \sqrt 2 \)

    Vậy \(\sqrt 3 < m < 1 + \sqrt 2 \Leftrightarrow 3 < {m^2} < 3 + 2\sqrt 2 \Rightarrow a = 3,b = 3,c = 2\)

    ATNETWORK

Mã câu hỏi: 207311

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON