YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp \(S.ABC\)có đáy là \(\Delta ABC\) vuông cân ở \(B,\,\)\(AC = a\sqrt 2 ,\,\)\(SA \bot \left( {ABC} \right),\) \(SA = a.\) Gọi \(G\) là trọng tâm của \(\Delta SBC\), \(mp\left( \alpha  \right)\) đi qua \(AG\) và song song với \(BC\) chia khối chóp thành hai phần. Gọi \(V\)là thể tích của khối đa diện không chứa đỉnh \(S\). Tính \(V.\) 

    • A. \(\frac{{5{a^3}}}{{54}}.\)
    • B. \(\frac{{4{a^3}}}{9}.\)
    • C. \(\frac{{2{a^3}}}{9}.\)       
    • D. \(\frac{{4{a^3}}}{{27}}.\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Trong \(\left( {SBC} \right)\) qua \(G\) kẻ \(MN//BC\,\,\left( {M \in SB,\,\,N \in SC} \right)\). Khi đó mặt phẳng đi qua \(AG\) và song song với \(BC\) chính là mặt phẳng \(\left( {AMN} \right)\). Mặt phẳng này chia khối chóp thành 2 khối \(S.AMN\) và \(AMNBC\).

    Gọi \(H\) là trung điểm của \(BC.\)

    Vì \(MN//BC \Rightarrow \) Theo định lí Ta-lét ta có: \(\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{2}{3}\left( { = \frac{{SG}}{{SH}}} \right)\).

    \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_{S.AMN}} = \frac{4}{9}{V_{S.ABC}}\).

    Mà \({V_{S.AMN}} + {V_{AMNBC}} = {V_{S.ABC}} \Rightarrow {V_{AMNBC}} = \frac{5}{9}{V_{S.ABC}} = V\).

    Ta có \(\Delta ABC\) vuông cân tại \(B \Rightarrow AB = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}{a^2}\).

    \( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{1}{3}a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{6}\).

    Vậy \(V = \frac{5}{9}.\frac{{{a^3}}}{6} = \frac{{5{a^3}}}{{54}}\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 359286

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON