YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y=f(x)\) xác định và liên tục trên đoạn \(\left[ {0;\frac{7}{2}} \right]\), có đồ thị của hàm số \(y=f'(x)\) như hình vẽ. Hỏi hàm số \(y=f(x)\) đạt giá trị nhỏ nhất trên đoạn \(\left[ {0;\frac{7}{2}} \right]\) tại điểm \(x_0\) nào dưới đây?

    • A. \(x_0=0\)
    • B. \(x_0=1\)
    • C. \(x_0=3\)
    • D. \(x_0=2\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(y=f(x)\) xác định và liên tục trên \(\left[ {0;\frac{7}{2}} \right]\) và \(f'\left( x \right) \le 0,\forall x \in \left[ {0;3} \right]\); \(f'\left( x \right) > 0,\forall x \in \left( {3;\frac{7}{2}} \right]\) suy ra hàm số \(y=f(x)\) có duy nhất một cực tiểu tại điểm \(x_0=3\)

    \( \Rightarrow \mathop {\min }\limits_{\left[ {0;\frac{7}{2}} \right]} f\left( x \right) = f\left( 3 \right)\)

     

    ATNETWORK

Mã câu hỏi: 53828

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON