YOMEDIA
NONE

Bài tập 62 trang 58 SBT Toán 8 Tập 2

Giải bài 62 tr 58 sách BT Toán lớp 8 Tập 2

Giải các bất phương trình:

a. \({\left( {x + 2} \right)^2} < 2x\left( {x + 2} \right) + 4\)

b. \(\left( {x + 2} \right)\left( {x + 4} \right) > \left( {x - 2} \right)\left( {x + 8} \right) + 26\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

*) Áp dụng qui tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta đổi dấu hạng tử đó.

 *) Áp dụng qui tắc nhân với một số : 

Khi nhân hai vế của bất phương trình với cùng một số khác \(0\), ta phải :

- Giữ nguyên chiều bất phương trình nếu số đó dương.

- Đổi chiều bất phương trình nếu số đó âm.

Lời giải chi tiết

a. Ta có:

\(\eqalign{  & {\left( {x + 2} \right)^2} < 2x\left( {x + 2} \right) + 4  \cr  &  \Leftrightarrow {x^2} + 4x + 4 < 2{x^2} + 4x + 4  \cr  &  \Leftrightarrow {x^2} + 4x - 2{x^2} - 4x < 4 - 4  \cr  &  \Leftrightarrow  - {x^2} < 0  \cr  &  \Leftrightarrow {x^2} > 0 \cr} \)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x \ne 0} \right\}\)

b. Ta có:

\(\eqalign{  & \left( {x + 2} \right)\left( {x + 4} \right) > \left( {x - 2} \right)\left( {x + 8} \right) + 26  \cr  &  \Leftrightarrow {x^2} + 4x + 2x + 8 > {x^2} + 8x - 2x - 16 + 26  \cr  &  \Leftrightarrow {x^2} + 6x - {x^2} - 6x < 10 - 8  \cr  &  \Leftrightarrow 0x > 2 \cr} \)

Vậy bất phương trình vô nghiệm.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 62 trang 58 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON