YOMEDIA
NONE

Bài tập 5.1 trang 13 SBT Toán 8 Tập 2

Giải bài 5.1 tr 13 sách BT Toán lớp 8 Tập 2

Giải các phương trình

a. \({2 \over {x + {1 \over {1 + {{x + 1} \over {x - 2}}}}}} = {6 \over {3x - 1}}\)

b. \({{{{x + 1} \over {x - 1}} - {{x - 1} \over {x + 1}}} \over {1 + {{x + 1} \over {x - 1}}}} = {{x - 1} \over {2\left( {x + 1} \right)}}\)

c. \({5 \over x} + {4 \over {x + 1}} = {3 \over {x + 2}} + {2 \over {x + 3}}\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết

a. Ta có: \(x + {1 \over {1 + {{x + 1} \over {x - 2}}}} = x + {{x - 2} \over {2x - 1}} = {{2\left( {{x^2} - 1} \right)} \over {2x - 1}}\)

ĐKXĐ của phương trình là \(x \ne 2,x \ne {1 \over 2},x \ne  \pm 1,x \ne {1 \over 3}\). Ta biến đổi phương trình đã cho thành

\({{2x - 1} \over {{x^2} - 1}} = {6 \over {3x - 1}}\). Khử mẫu và rút gọn:

\(\eqalign{  & \left( {2x - 1} \right)\left( {3x - 1} \right) = 6\left( {{x^2} - 1} \right)  \cr  &  \Leftrightarrow  - 5x + 1 =  - 6  \cr  &  \Leftrightarrow x = {7 \over 5} \cr} \)

Giá trị \(x = {7 \over 5}\) thỏa mãn ĐKXĐ.  Vậy phương trình có nghiệm là \(x = {7 \over 5}\)

b. Cách 1. ĐKXĐ: \(x \ne  \pm 1\). Biến đổi vế trái thành \({{4x} \over {{x^2} - 1}}.{{x - 1} \over {2x}} = {2 \over {x + 1}}\), ta đưa phương trình đã cho về dạng \({2 \over {x + 1}} = {{x - 1} \over {2\left( {x + 1} \right)}}\).

Giải phương trình này bằng cách khử mẫu:

\(\eqalign{  & 4\left( {x + 1} \right) = \left( {x - 1} \right)\left( {x + 1} \right)  \cr  &  \Leftrightarrow \left( {x + 1} \right)\left( {x - 5} \right) = 0 \cr} \)

\( \Leftrightarrow x =  - 1\) hoặc \(x = 5\)

Trong hai giá trị vừa tìm được, chỉ có x = 5 là thỏa mãn ĐKXĐ. Vậy phương trình đã cho có một nghiệm duy nhất x = 5.

Cách 2. Đặt \({{x + 1} \over {x - 1}} = y\), ta có phương trình \({{y - {1 \over y}} \over {1 + y}} = {1 \over {2y}}\). ĐKXĐ của phương trình này là \(y \ne 0\) và \(y \ne  - 1\). Giải phương trình này bằng cách khử mẫu:

\(\eqalign{  & 2{y^2} - 2 = 1 + y  \cr  &  \Leftrightarrow 2\left( {{y^2} - 1} \right) - \left( {y + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {y + 1} \right)\left( {2y - 3} \right) = 0 \cr} \)

\( \Leftrightarrow y =  - 1\) hoặc \(y = {3 \over 2}\)

Trong hai giá trị tìm được, chỉ có \(y = {3 \over 2}\) là thỏa mãn ĐKXĐ

Vậy phương trình đã cho tương đương với phương trình \({{x + 1} \over {x - 1}} = {3 \over 2}\)

Giải phương trình này ta được x = 5

c. ĐKXĐ: \(x \in \left\{ {0; - 1; - 2; - 3} \right\}\). Ta biến đổi phương trình như sau:

\(\eqalign{  & {5 \over x} + {2 \over {x + 3}} = {4 \over {x + 1}} + {3 \over {x + 2}}  \cr  &  \Leftrightarrow \left( {{5 \over x} + 1} \right) + \left( {{2 \over {x + 3}} + 1} \right) = \left( {{4 \over {x + 1}} + 1} \right) + \left( {{3 \over {x + 2}} + 1} \right)  \cr  &  \Leftrightarrow {{5 + x} \over x} + {{5 + x} \over {x + 3}} = {{5 + x} \over {x + 1}} + {{5 + x} \over {x + 2}}  \cr  &  \Leftrightarrow \left( {5 + x} \right)\left( {{1 \over x} + {1 \over {x + 3}} - {1 \over {x + 1}} - {1 \over {x + 2}}} \right) = 0  \cr  &  \Leftrightarrow 5 + x = 0(1) \cr} \)

hoặc \({1 \over x} + {1 \over {x + 3}} - {1 \over {x + 1}} - {1 \over {x + 2}} = 0\)  (2)

Ta có:

(1) \( \Leftrightarrow x =  - 5\)

(2) \(\eqalign{  &  \Leftrightarrow {1 \over x} + {1 \over {x + 3}} = {1 \over {x + 1}} + {1 \over {x + 2}}  \cr  &  \Leftrightarrow {{2x + 3} \over {x\left( {x + 3} \right)}} = {{2x + 3} \over {\left( {x + 1} \right)\left( {x + 2} \right)}}  \cr  &  \Leftrightarrow \left( {2x + 3} \right)\left( {{1 \over {{x^2} + 3x}} - {1 \over {{x^2} + 3x + 2}}} \right) = 0 \cr} \)

\( \Leftrightarrow 2x + 3 = 0\) hoặc \({1 \over {{x^2} + 3x}} - {1 \over {{x^2} + 3x + 2}} = 0\)

+ \(2x + 3 = 0 \Leftrightarrow x =  - {3 \over 2}\)

+ \({1 \over {{x^2} + 3x}} - {1 \over {{x^2} + 3x + 2}} = 0\). Dễ thấy phương trình này vô nghiệm.

Tóm lại, phương trình đã cho có tập nghiệm là S = \(\left\{ { - 5; - {3 \over 2}} \right\}\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5.1 trang 13 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON