YOMEDIA
IN_IMAGE

Bài tập 13 trang 17 SGK Toán 11 NC

Bài tập 13 trang 17 SGK Toán 11 NC

Xét hàm số  y = f(x) = \(\cos \frac{x}{2}\)

a. Chứng minh rằng với mỗi số nguyên k, f(x+k4π) = f(x) với mọi x.

b. Lập bảng biến thiên của hàm số y = \(\cos \frac{x}{2}\) trên đoạn [−2π;2π].

c. Vẽ đồ thị của các hàm số y = cosx và y = \(\cos \frac{x}{2}\) trong cùng một hệ trục tọa độ vuông góc Oxy.

d. Trong mặt phẳng tọa độ Oxy, xét phép biến hình F biến mỗi điểm (x;y) thành điểm (x′;y′) sao cho x′ = 2xvà y′ = y. Chứng minh rằng F biến đồ thị của hàm số y = cosx thành đồ thị của hàm số  y = \(\cos \frac{x}{2}\).

ADSENSE

Hướng dẫn giải chi tiết

a) \(f\left( {x + k4\pi } \right) = \cos \left( {\frac{\pi }{2} + k2\pi } \right) \)

\(= \cos \frac{x}{2} = f\left( x \right)\)

b) Bảng biến thiên

c) Đồ thị 

d) Nếu đặt x′ = 2x, y′ = y thì y = cosx khi và chỉ khi \(y' = \cos \frac{{x'}}{2}\). Do đó phép biến đổi xác đinh bởi (x;y)↦(x′;y′) sao cho x′ = 2x, y′ = y biến đồ thị hàm số y = cosx thành đồ thị hàm số \(y = \cos \frac{x}{2}\).

-- Mod Toán 11 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 13 trang 17 SGK Toán 11 NC HAY thì click chia sẻ 

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

ADMICRO

 

YOMEDIA
ON