YOMEDIA
NONE

Hoạt động 5 trang 62 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Hoạt động 5 trang 62 SGK Toán 10 Kết nối tri thức tập 1

Trong mặt phẳng tọa độ Oxy, cho các điểm M(x;y) và N(x’; y’)

a) Tìm tọa độ của các vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \).

b) Biểu thị vectơ \(\overrightarrow {MN} \) theo các vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) và tọa độ của \(\overrightarrow {MN} \).

c) Tìm độ dài của vectơ \(\overrightarrow {MN} \)

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải

a) Tọa độ của vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) chính là tọa độ của M, N

b) Biểu thị vectơ \(\overrightarrow {MN} \) theo các vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) bằng quy tắc hiệu.

Tìm tọa độ của \(\overrightarrow {MN} \) dựa vào biểu thị theo hiệu ở trên và tọa độ của vectơ \(\overrightarrow {OM} ,\;\overrightarrow {ON} \) đã biết.

c) Độ dài của vectơ \(\overrightarrow {MN} (a;b)\) là \(\left| {\overrightarrow {MN} } \right| = \sqrt {{a^2} + {b^2}} \)

Hướng dẫn giải

a) Vì điểm M có tọa độ (x; y) nên vectơ \(\overrightarrow {OM} \) có tọa độ (x; y).

Và điểm N có tọa độ (x’; y’) nên vectơ \(\overrightarrow {ON} \) có tọa độ (x’; y’). 

b) Ta có:  \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM} \) (quy tắc hiệu)

Mà \(\overrightarrow {OM} \) có tọa độ (x; y); \(\overrightarrow {ON} \) có tọa độ (x’; y’).

\( \Rightarrow \overrightarrow {MN}  = \left( {x';y'} \right) - \left( {x;y} \right) = \left( {x' - x;y' - y} \right)\)

c) Vì \(\overrightarrow {MN} \) có tọa độ \(\left( {x' - x;y' - y} \right)\) nên \(\left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( {x' - x} \right)}^2} + {{\left( {y' - y} \right)}^2}} \)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động 5 trang 62 SGK Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
NONE
ON