Giải bài 4.23 trang 58 SBT Toán 10 Kết nối tri thức tập 1
Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(2; - 1),\,\,B(1;4)\) và \(C(7;0).\)
a) Tính độ dài các đoạn thẳng \(AB,\,\,BC\) và \(CA.\) Từ đó suy ra tam giác \(ABC\) là một tam giác vuông cân.
b) Tìm tọa độ của điểm \(D\) sao cho tứ giác \(ABDC\) là một hình vuông.
Hướng dẫn giải chi tiết Bài 4.23
Phương pháp giải
- Tính độ dài đoạn thẳng \(AB,\,\,AC,\,\,BC\)
- Áp dụng định lý Pi-ta-go đảo để chứng minh \(\Delta ABC\) vuông cân tại \(A\)
- Sử dụng tích chất hai vectơ bằng nhau để tìm điểm \(D\): \(\overrightarrow {AB} = \overrightarrow {DC} \)
Lời giải chi tiết
a) Ta có: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {4 + 1} \right)}^2}} = \sqrt {26} \)
\(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( {7 - 2} \right)}^2} + {{\left( {0 + 1} \right)}^2}} = \sqrt {26} \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( {0 - 4} \right)}^2}} = \sqrt {52} = 2\sqrt {13} \)
Xét \(\Delta ABC\) có: \(A{B^2} + A{C^2} = 26 + 26 = 52 = B{C^2}\)
\( \Rightarrow \) \(\Delta ABC\) vuông tại \(A\)
mặt khác \(AB = AC = \sqrt {26} \)
nên \(\Delta ABC\) vuông cân tại \(A\)
b) Gọi điểm \(D\) có tọa độ là: \(D(x;y).\)
Xét hình vuông \(ABDC\) có:
\(\begin{array}{l}\overrightarrow {AB} = \overrightarrow {CD} \\ \Leftrightarrow \,\,(1 - 2;4 + 1) = (x - 7;y - 0)\\ \Leftrightarrow \,\,( - 1;5) = (x - 7;y)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x - 7 = - 1}\\{y = 5}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = 5}\end{array}} \right.\end{array}\)
Vậy \(D(6;5)\)
-- Mod Toán 10 HỌC247
-
Trên trục \((0;\overrightarrow e )\) cho các điểm \(A, B, M,N\) có tọa độ lần lượt là \(-1, 2, 3, -2\). Em hãy vẽ trục và biểu diễn các điểm đã cho trên trục;
bởi Lê Bảo An 05/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 4.19 trang 65 SGK Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.22 trang 58 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.24 trang 58 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.25 trang 59 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.26 trang 59 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.27 trang 59 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 4.28 trang 59 SBT Toán 10 Kết nối tri thức tập 1 - KNTT