YOMEDIA
NONE

Giải bài 4.24 trang 58 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.24 trang 58 SBT Toán 10 Kết nối tri thức tập 1

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M( - 2;1)\) và \(N(4;5).\)

a) Tìm tọa độ của điểm \(P\) thuộc \(Ox\) sao cho \(PM = PN.\)

b) Tìm tọa độ của điểm \(Q\) sao cho \(\overrightarrow {MQ}  = 2\overrightarrow {PN} .\)

c) Tìm tọa độ của điểm \(R\) thỏa mãn \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 .\) Từ đó suy ra \(P,\,\,Q,\,\,R\) thẳng hàng.

ATNETWORK

Hướng dẫn giải chi tiết Bài 4.24

Phương pháp giải

- Nếu điểm M có toạ độ (x; y) thì vecto \(\overrightarrow {OM} \) có toạ độ (x; y) và độ dài \(\left| {\overrightarrow {OM} } \right| = \sqrt {{x^2} + {y^2}} \)

- Với hai điểm M(x; y) và N(x'; y') thì \(\overrightarrow {MN}  = \left( {x' - x;y' - y} \right)\) và khoảng cách giữa hai điểm M, N là \(\left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( {x' - x} \right)}^2} + {{\left( {y' - y} \right)}^2}} \)  

Lời giải chi tiết

a)  Vì điểm \(P\) thuộc \(Ox\) nên tọa độ điểm \(P\) là: \(P(x;0)\)

Ta có: \(PM = PN\,\, \Leftrightarrow \,\,\left| {\overrightarrow {PM} } \right| = \left| {\overrightarrow {PN} } \right|\)

        \(\begin{array}{l} \Leftrightarrow \,\,\sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {0 - 1} \right)}^2}}  = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {0 - 5} \right)}^2}} \\ \Leftrightarrow \,\,\sqrt {{x^2} + 4x + 4 + 1}  = \sqrt {{x^2} - 8x + 16 + 25} \\ \Leftrightarrow \,\,{x^2} + 4x + 5 = {x^2} - 8x + 41\\ \Leftrightarrow \,\,12x = 36\,\, \Leftrightarrow \,\,x = 3\end{array}\)

Vậy \(P(3;0)\)

b) Gọi tọa độ điểm \(Q\) là: \(Q(x;y)\)

Ta có: \(\overrightarrow {MQ}  = 2\overrightarrow {PN} \,\, \Leftrightarrow \,\,(x + 2;y - 1) = 2(4 - 3;5 - 0)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( {x + 2;y - 1} \right) = (2;10)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + 2 = 2}\\{y - 1 = 10}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 11}\end{array}} \right.} \right.\end{array}\)

Vậy \(Q(0;11)\)

c) Gọi tọa độ điểm \(R\) là: \(R(x;y)\)

Ta có: \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 \,\, \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + 2\left( {4 - x;5 - y} \right) = \left( {0;0} \right)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + \left( {8 - 2x;10 - 2y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left( {6 - 3x;11 - 3y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6 - 3x = 0}\\{11 - 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = \frac{{11}}{3}}\end{array}} \right.} \right.\end{array}\) 

Vậy \(R\left( {2;\frac{{11}}{3}} \right)\)

Ta có: \(\overrightarrow {PQ}  = \left( { - 3;11} \right),\,\,\overrightarrow {PR}  = \left( { - 1;\frac{{11}}{3}} \right)\) \( \Rightarrow \) \(\overrightarrow {PQ} \) và \(\overrightarrow {PR} \) cùng phương

\( \Rightarrow \) \(P,\,\,Q,\,\,R\) thẳng hàng

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.24 trang 58 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON