YOMEDIA
NONE

Giải bài 4.28 trang 59 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 4.28 trang 59 SBT Toán 10 Kết nối tri thức tập 1

Để kéo đường dây điện bằng qua một hồ hình chữ nhật \(ABCD\) với độ dài \(AB = 200\,\,m,\,\,AD = 180\,\,m,\) người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm bên trên bờ \(AB\) và cách đỉnh \(A\) khoảng cách 20 m, cột thứ tư nằm trên bờ \(CD\) và cách đỉnh \(C\) khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ \(AB,\,\,AD.\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 4.28

Phương pháp giải

Chọn hệ trục tọa độ \(Oxy\) sao cho \(A(0;0),\,\,B(200;0),\,\,C(200;180),\,\,D(0;180).\)

Gọi vị trí các cột điện là: \({C_1},\,\,{C_2},\,\,{C_3},\,\,{C_4}.\)

Lời giải chi tiết

Ta có: \(A{C_1} = 20\,\,m\) nên \({C_1}(20;0)\) và \(C{C_4} = 30\,\,m\) nên \({C_4}(170;180).\)

Do bốn cột điện \({C_1},\,\,{C_2},\,\,{C_3},\,\,{C_4}\) được trồng liên tiếp đều nhau nên \(\overrightarrow {{C_1}{C_2}}  = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \) và \(\overrightarrow {{C_1}{C_4}}  = 3\overrightarrow {{C_3}{C_4}} \)

Gọi tọa độ điểm \({C_2}(x;y)\) và \({C_3}(x';y')\)

Ta có: \(\overrightarrow {{C_1}{C_2}}  = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \,\, \Leftrightarrow \,\,(x - 20;y) = \frac{1}{3}\left( {150;180} \right)\)

   \(\begin{array}{l} \Leftrightarrow \,\,(x - 20;y) = \left( {50;60} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x - 20 = 50}\\{y = 60}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 70}\\{y = 60}\end{array}} \right.} \right.\end{array}\)

\( \Rightarrow \,\,{C_2}(70;60)\)

\( \Rightarrow \,\,d\left( {{C_1};AB} \right) = d\left( {{C_1};Ox} \right) = 70\) và \(d\left( {{C_1};AD} \right) = d\left( {{C_1};Oy} \right) = 60.\)

Ta có: \(\overrightarrow {{C_1}{C_4}}  = 3\overrightarrow {{C_3}{C_4}} \,\, \Leftrightarrow \,\,\left( {150;180} \right) = 3\left( {170 - x';180 - y'} \right)\)

\(\begin{array}{l} \Leftrightarrow \,\,\left( {150;180} \right) = \left( {510 - 3x';540 - 3y'} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{510 - 3x' = 150}\\{540 - y' = 180}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x' = 120}\\{y' = 120}\end{array}} \right.} \right.\end{array}\) 

\( \Rightarrow \) \({C_3}(120;120)\)

\( \Rightarrow \) \(d\left( {{C_3};AB} \right) = d\left( {{C_3};Ox} \right) = 120\) và \(d\left( {{C_3};AD} \right) = d\left( {{C_3};Oy} \right) = 120\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4.28 trang 59 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON