Giải bài 2 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1
Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a) \(y = m{x^4} + (m + 1){x^2} + x + 3\)
b) \(y = (m - 2){x^3} + (m - 1){x^2} + 5\)
Hướng dẫn giải chi tiết
Phương pháp giải
Hai số bậc hai (biến x) có dạng \(y = f(x) = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R}\)và \(a \ne 0\)
Điều kiện: Bậc hai, hệ số a khác 0.
Lời giải chi tiết
a) Để hàm số \(y = m{x^4} + (m + 1){x^2} + x + 3\) là hàm số bậc hai thì:
\(\left\{ \begin{array}{l}m = 0\\m + 1 \ne 0\end{array} \right.\) tức là \(m = 0.\)
Khi đó \(y = {x^2} + x + 3\)
Vây \(m = 0\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + x + 3\)
b) Để hàm số \(y = (m - 2){x^3} + (m - 1){x^2} + 5\) là hàm số bậc hai thì:
\(\left\{ \begin{array}{l}m - 2 = 0\\m - 1 \ne 0\end{array} \right.\) tức là \(m = 2.\)
Khi đó \(y = (2 - 1){x^2} + 5 = {x^2} + 5\)
Vây \(m = 2\) thì hàm số đã cho là hàm số bậc hai \(y = {x^2} + 5\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Vận dụng trang 55 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 56 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 57 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 57 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 54 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 55 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 55 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 55 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 55 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 55 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 56 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST