Hướng dẫn Giải bài tập Toán 10 Cánh Diều Chương 4 Bài 4 Tổng và hiệu của hai vectơ giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động 1 trang 83 SGK Toán 10 Cánh diều tập 1 - CD
Một vât dịch chuyển từ A đến B và tiếp tục dịch chuyển từ B đến C (Hình 49).
a) Biểu diễn vecto dịch chuyển của vật từ A đến B và từ B đến C.
b) Xác định vecto dịch chuyển tổng hợp của vật
-
Hoạt động 2 trang 83 SGK Toán 10 Cánh diều tập 1 - CD
Cho hai vecto \(\overrightarrow a ,\overrightarrow b \). Lấy một điểm A tùy ý.
a) Vẽ \(\overrightarrow {AB} = a\), \(\overrightarrow {BC} = b\)
b) Tổng của hai vecto \(\overrightarrow a \) và \(\overrightarrow b \)bằng vecto nào?
-
Luyện tập 1 trang 84 SGK Toán 10 Cánh diều tập 1 - CD
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh \(\overrightarrow {PB} + \overrightarrow {MC} = \overrightarrow {AN} \)
-
Hoạt động 1 trang 84 SGK Toán 10 Cánh diều tập 1 - CD
Cho ABCD là hình bình hành (Hình 52). So sánh:
a) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \).
b) Vecto tổng \(\overrightarrow {AB} + \overrightarrow {AD} \) và vecto \(\overrightarrow {AC} \)
-
Luyện tập 1 trang 84 SGK Toán 10 Cánh diều tập 1 - CD
Hãy giải thích hướng đi của thuyền ở Hình 48.
-
Luyện tập 3 trang 85 SGK Toán 10 Cánh diều tập 1 - CD
Cho hình bình hành ABCD và điểm E bất kì. Chứng minh: \(\overrightarrow {AB} + \overrightarrow {CE} + \overrightarrow {AD} = \overrightarrow {AE} \).
-
Hoạt động 4 trang 85 SGK Toán 10 Cánh diều tập 1 - CD
Trong Hình 54, hai ròng rọc có trục quay nằm ngang và song song với nhau, hai vật có trọng lượng bằng nahu. Mỗi dây có một đầu buộc vào vật, một đầu buộc vào một mảnh nhựa cứng. Hai vật lần lượt tác động lên mảng nhựa các lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} .\) Nhận xét về hướng và độ dài của mỗi cặp vecto sau:
a) \(\overrightarrow {{P_1}} \) và \(\overrightarrow {{P_2}} \) biểu diễn trọng lực của hai vật
b) \(\overrightarrow {{F_1}} \) và \(\;\overrightarrow {{F_2}} .\)
(Bỏ qua trọng lượng các dây và các lực ma sát).
-
Hoạt động 5 trang 86 SGK Toán 10 Cánh diều tập 1 - CD
Cho hai vecto \(\overrightarrow a \),\(\overrightarrow b \). Lấy một điểm M tùy ý.
a) Vẽ \(\overrightarrow {MA} = \overrightarrow a ,\;\overrightarrow {MB} = \overrightarrow b ,\;\overrightarrow {MC} = - \overrightarrow b \) (Hình 56)
b) Tổng của hai vecto \(\overrightarrow a \) và \(( - \overrightarrow b )\) bằng vecto nào?
-
Luyện tập 4 trang 86 SGK Toán 10 Cánh diều tập 1 - CD
Cho tam giác ABC có M là trung điểm AC, N là trung điểm BC và AB = a. Tính độ dài vecto \(\overrightarrow {CM} - \overrightarrow {NB} \).
-
Giải bài 1 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho ba điểm M, N, P. Vecto \(\overrightarrow u = \overrightarrow {NP} + \overrightarrow {MN} \) bằng vecto nào sau đây?
A. \(\overrightarrow {PN} \)
B. \(\overrightarrow {PM} \)
C. \(\overrightarrow {MP} \)
D. \(\overrightarrow {NM} \)
-
Giải bài 2 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho ba điểm D, E, G. Vecto \(\overrightarrow v = \overrightarrow {DE} + ( - \overrightarrow {DG} )\) bằng vecto nào sau đây?
A. \(\overrightarrow {EG} \)
B. \(\overrightarrow {GE} \)
C. \(\overrightarrow {GD} \)
D. \(\overrightarrow {ED} \)
-
Giải bài 3 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \)
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \)
-
Giải bài 4 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho hình hình hành ABCD, gọi O là giao điểm của AC và BD. Các khảng định sau đúng hay sai?
a) \(|\overrightarrow {AB} + \overrightarrow {AD} |\; = \;|\overrightarrow {AC} |\)
b) \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {CB} \)
c) \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} + \overrightarrow {OD} \)
-
Giải bài 5 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho đường tròn tâm O. Giả sử A, B là hai điểm nằm trên đường tròn. Tìm điều kiện cần và đủ để hai vecto \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) đối nhau.
-
Giải bài 6 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB} - \overrightarrow {MA} = \overrightarrow {MC} - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.
-
Giải bài 7 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho hình vuông ABCD có cạnh a. Tính độ dài các vecto sau:
a) \(\overrightarrow {DA} + \overrightarrow {DC} \)
b) \(\overrightarrow {AB} - \overrightarrow {AD} \)
c) \(\overrightarrow {OA} + \overrightarrow {OB} \) với O là giao điểm của AC và BD.
-
Giải bài 8 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\;\overrightarrow {{F_2}} = \overrightarrow {OB} \) và \(\overrightarrow {{F_3}} = \overrightarrow {OC} \) cùng tác động vào một vật tại điểm O và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \)đều là 120 N và \(\widehat {AOB} = {120^o}\). Tìm cường độ và hướng của lực \(\overrightarrow {{F_3}} .\)
-
Giải bài 9 trang 87 SGK Toán 10 Cánh diều tập 1 - CD
Một dòng sông chảy từ phía bắc xuống phía nam với vận tốc là 10 km/h. Một chiếc ca nô chuyển động từ phía đông sang phía tây với vận tốc 40 km/h so với mặt nước. Tìm vận tốc của ca nô so với bờ sông.
-
Giải bài 32 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho ba điểm M, N, P phân biệt. Phát biểu nào sau đây là đúng?
A. \(\overrightarrow {MN} - \overrightarrow {NP} = \overrightarrow {MP} \)
B. \( - \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \)
C. \(\overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \)
D. \(\overrightarrow {MN} + \overrightarrow {NP} = - \overrightarrow {MP} \)
-
Giải bài 33 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {BA} + \overrightarrow {DA} = \overrightarrow {CA} \)
B. \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AD} \)
C. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {CA} \)
D. \(\overrightarrow {AB} + \overrightarrow {BC} = - \overrightarrow {AC} \)
-
Giải bài 34 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho các điểm A, B, O. Khẳng định nào sau đây là đúng?
A. \(\overrightarrow {AB} = \overrightarrow {OA} - \overrightarrow {OB} \)
B. \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \)
C. \(\overrightarrow {AB} = \overrightarrow {OA} + \overrightarrow {OB} \)
D. \(\overrightarrow {AB} = \overrightarrow {OB} + \overrightarrow {OA} \)
-
Giải bài 35 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho ba điểm A, B, M phân biệt. Điều kiện cần và đủ để điểm M là trung điểm của đoạn thẳng AB là:
A. \(\overrightarrow {MA} = \overrightarrow {MB} \)
B. \(\left| {\overrightarrow {MA} } \right| = \left| {\overrightarrow {MB} } \right|\)
C. \(\overrightarrow {MA} ,\overrightarrow {MB} \) ngược hướng
D. \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \)
-
Giải bài 36 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho tam giác ABC. Điều kiện cần và đủ để điểm G là trọng tâm tam giác ABC là:
A. \(\overrightarrow {GA} + \overrightarrow {GB} = \overrightarrow {GC} \)
B. \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {AG} \)
C. \(\overrightarrow {GC} + \overrightarrow {GA} = \overrightarrow {GB} \)
D. \(\overrightarrow {GA} + \overrightarrow {GB} - \overrightarrow {GC} = \overrightarrow 0 \)
-
Giải bài 37 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho tứ giác ABCD, O là trung điểm của AB. Chứng minh \(\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {AC} + \overrightarrow {BD} \)(*)
-
Giải bài 38 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho tam giác ABC vuông tại A, \(AB = 4a,AC = 5a\). Tính
a) \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\)
b) \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\)
-
Giải bài 39 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho tam giác đều ABC cạnh a. Tính:
a) \(\left| {\overrightarrow {AB} + \overrightarrow {BC} } \right|\)
b) \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\)
c) \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\)
-
Giải bài 40 trang 92 SBT Toán 10 Cánh diều tập 1 - CD
Cho tam giác ABC thỏa mãn \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\) (*). Chứng minh tam giác ABC vuông tại A.
-
Giải bài 41 trang 93 SBT Toán 10 Cánh diều tập 1 - CD
Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) khác vectơ \(\overrightarrow 0 \). Chứng minh rằng nếu hai vectơ cùng hướng thì \(\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| = \left| {\overrightarrow a + \overrightarrow b } \right|\)
-
Giải bài 42 trang 93 SBT Toán 10 Cánh diều tập 1 - CD
Cho hình vuông ABCD cạnh a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\)
-
Giải bài 43 trang 93 SBT Toán 10 Cánh diều tập 1 - CD
Cho tứ giác ABCD là hình bình hành. Gọi O là giao điểm của hai đường chéo , E là trung điểm của AD, G là giao điểm của BE và AC. Tính:
a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \)
b) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GD} \)
-
Giải bài 44 trang 93 SBT Toán 10 Cánh diều tập 1 - CD
Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thỏa mãn \(\left| {\overrightarrow {AB} + \overrightarrow {BM} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AM} } \right|\)
-
Giải bài 45 trang 93 SBT Toán 10 Cánh diều tập 1 - CD
Cho hai tam giác ABC và A’B’C’ có cùng trọng tâm là G. Chứng minh \(\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} = \overrightarrow 0 \)
-
Giải bài 46 trang 93 SBT Toán 10 Cánh diều tập 1 - CD
Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp của tam giác, D là điểm đối xứng với H qua O. Chứng minh \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HD} \)