YOMEDIA
NONE

Người ta khoét một lỗ tròn bán kính R/2 trong một đĩa phẳng mỏng, đồng chất, bán kính R . Tìm trọng tâm của phần còn lại.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử ta khoét thêm một lỗ tròn bán kính R/2 nữa đối xứng với lỗ tròn đã khoét lúc đầu (H.III.6G)

    Gọi \(\overrightarrow {{P}} \) là trọng lượng của đĩa bán kính R khi chưa bị khoét, \(\overrightarrow {{P_1}} \) là trọng lượng của đĩa nhỏ có bán kính R/2 và \(\overrightarrow {{P_2}} \) là trọng lượng của phần đĩa còn lại sau hai lần khoét, ta có:

    \(\displaystyle{{{P_1}} \over P} = {{{S_1}} \over S} = {\displaystyle{{{\pi {R^2}} \over 4}} \over {\pi {R^2}}} = {1 \over 4}\) ;    

    \(\displaystyle{{{P_2}} \over P} = {{S - 2{S_1}} \over S} = {{S - \displaystyle{S \over 2}} \over S} = {1 \over 2}\)

    =>  \(\displaystyle{{{P_1}} \over {{P_2}}} = {1 \over 2}\)

    Do tính chất đối xứng, trọng tâm phần đĩa còn lại sau hai lần khoét thì trùng với tâm O của đĩa khi chưa khoét, còn trọng tâm của đĩa nhỏ mà ta giả sử khoét thêm thì ở tâm O1 của nó. Gọi G là trọng tâm của đĩa sau khi bị khoét một lỗ tròn. Ta có hệ phương trình

    \(\displaystyle\left\{ \displaystyle \matrix{
    {{GO} \over {G{O_1}}} = {{{P_1}} \over {{P_2}}} = {1 \over 2} \hfill \cr 
    GO + G{O_1} = {R \over 2} \hfill \cr} \right.\)

    Giải ra ta được: \(G{O_1} = \displaystyle{R \over 3}\)  và  \(GO = \displaystyle{R \over 6}\)

      bởi Thụy Mây 04/01/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON