Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật
Hôm qua làm kiểm tra 1 tiết Toán, mình giải không biết đúng hay sai nữa!
Cho đa giác đều 20 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất sao cho 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật.
Trả lời (1)
-
- Có 10 đường kính của đường tròn được nối bởi 2 đỉnh của đa giác đều.
- Một hình chữ nhật có 4 đỉnh là đỉnh của đa giác được tạo bởi 2 đường kính nói trên.
- Số cách chọn 4 đỉnh của đa giác là \(C_{20}^{4} = 4845\)
- Số cách chọn 4 đỉnh của đa giác tạo thành hình chữ nhật là \(C_{10}^{2} = 45\)
- Xác suất cần tìm là: \(P = \frac{45}{4845} = \frac{3}{323}\)
bởi Lê Minh Trí 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
21/11/2022 | 1 Trả lời
-
Lm hộ em nhé
22/11/2022 | 0 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời