YOMEDIA
NONE

Tìm m để phương trình x^2-2mx+2m-3=0 có nghiệm

Cho pt: x2-2mx+2m-3=0

Tìm m để pt có nghiệm x1, x2 sao cho biểu thức A=x12(1-x22)+x22(1-x12) đạt giá trị lớn nhất.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Ta thấy:

    \(\Delta'=(-m)^2-(2m-3)=(m-1)^2+2>0, \forall m\in\mathbb{R}\)

    Do đó pt luôn có hai nghiệm pb với mọi $m$

    Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-3\end{matrix}\right.\)

    Khi đó: \(A=x_1^2(1-x_2^2)+x_2^2(1-x_1^2)\)

    \(=(x_1^2+x_2^2)-2(x_1x_2)^2\)

    \(=(x_1+x_2)^2-2x_1x_2-2(x_1x_2)^2\)

    \(=4m^2-2(2m-3)-2(2m-3)^2\)

    \(=-4m^2+20m-12=-(2m-5)^2+13\)

    \((2m-5)^2\geq 0\Rightarrow A\leq 0+13=13\)

    Vậy $A$ đạt max bằng $13$ khi \((2m-5)^2=0\Leftrightarrow m=\frac{5}{2}\)

      bởi Minh Nguyễn Minh 22/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON