YOMEDIA
NONE

Tìm giá trị lớn nhất của biểu thức M = x^2y^2 (x^2 + y^2)

Cho hai số x, y là số thực dương thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức : M = x2y2 ( x2 + y2 )

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • cm: ta có BĐT:\(\left(x+y\right)^2\ge4xy\)(khá quen thuộc)

    \(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=1\)(1)

    \(M=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy.\left(x^2+y^2\right)\)

    áp dụng BĐT trên theo chiều ngược lại:(x,y dương)

    \(2xy\left(x^2+y^2\right)\le\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{\left(x+y\right)^4}{4}=4\)

    do đó \(M\le\frac{1}{2}xy.4=2xy\)

    \(xy\le1\Rightarrow M\le2\)

    dấu = xảy ra khi x=y=1

      bởi Lê Thị Kim Hậu 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON