YOMEDIA
NONE

Giải phương trình căn(2x^2+7x+10)+căn(2x^2+x+4)=3(x+1)

Giải phương trình:\(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3\left(x+1\right)\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(\sqrt{2x^2+7x+10}=a;\sqrt{2x^2+x+4}=b\left(a,b>0\right)\)

    pt <=> a + b = 3(x + 1)

    Mà a2 - b2 = 2x2 + 7x + 10 - 2x2 - x - 4 = 6x + 6

    nên pt <=> a + b = \(\dfrac{a^2-b^2}{2}\)

    <=> (a - b)(a + b) = 2(a + b)

    Vì a;b > 0 nên a + b khác 0. Chia cả 2 vế của pt cho a + b ta có

    pt <=> a - b = 2

    <=> \(\sqrt{2x^2+7x+10}-\sqrt{2x^2+x+4}=2\)

    <=> \(\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)

    Bình phương 2 vế ta có:

    pt <=> \(2x^2+7x+10=2x^2+x+8+8\sqrt{2x^2+x+4}\)

    <=> \(3x+1=4\sqrt{2x^2+x+4}\)

    Bình phương lần nữa rồi làm nốt, làm xong thì thử lại.

      bởi Rồng Con 12/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON