YOMEDIA
NONE

Bài 45 trang 12 sách bài tập toán 9 tập 1

Bài 45 (Sách bài tập - tập 1 - trang 12)

Với \(a\ge0;b\ge0\), chứng minh :

                 \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Cả 2 vế đều không âm nên bình phương hai vế ta được bất đẳng thức tương đương. Điều phải chứng minh tương đương với:

    \(\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

    \(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+2\sqrt{ab}+b}{4}\ge0\)

    \(\Leftrightarrow\dfrac{a-2\sqrt{ab}+b}{4}\ge0\)

    \(\Leftrightarrow\dfrac{\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2}{4}\ge0\)

    \(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)

    Bất đẳng thức cuối cùng luôn đúng.

      bởi Lê Thị Kim Hậu 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON