YOMEDIA
NONE

Tính N=(a+b)/c+(b+c)/a+(c+a)/b biết (2a+b+c)/a=(a+2b+c)/b=(a+b+2c)/c

Bài1: Cho \(ac=b^2;bd=c^2\)

CMR \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

Bài2: Cho \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)

Tính N= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

GIÚP MÌNH VS!!!! ĐANG CẦN GẤP

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 2 :

    Ta có :

    \(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)

    \(\Rightarrow\dfrac{2a+b+c}{a}-1=\dfrac{a+2b+c}{b}-1=\dfrac{a+b+2c}{c}-1\)\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

    * Nếu \(a+b+c=0\), Ta suy ra các đẳng thức sau :

    \(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

    Thay các đẳng thức vừa tìm được vào N, ta có :

    \(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

    \(\Leftrightarrow N=\dfrac{-c}{c}+\dfrac{-a}{a}+\dfrac{-b}{b}\)

    \(\Leftrightarrow N=-1+\left(-1\right)+\left(-1\right)=-3\)

    * Nếu \(a+b+c\ne0\)

    Để \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

    \(\Rightarrow a=b=c\)

    \(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

    Thay các đẳng thức vào N ta có :

    \(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

    \(\Leftrightarrow N=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)

    Vậy.....

    tik mik nha !!!

      bởi Trần Đẳng Đẳng 01/03/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON