RANDOM

Chứng minh AE < EC biết tam giác ABC vuông tại A, đường phân giác BE, EH vuông góc BC

Bài 3 : Cho tam giác ABC vuông tại A đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC ). Gọi K là giao điểm của AB và HE. CMR:

a, tam giác ABE = tam giác HBE

b, BE là đường trung trực của đoạn thẳng AH

c, EK = EC

d, AE < EC

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • A B C 1 2 E H K

    a) Xét hai tam giác vuông \(ABE\)\(HBE\) có:

    BE: cạnh chung

    \(\widehat{B_1}\) = \(\widehat{B_2}\) (đối đỉnh)

    Vậy: \(\Delta ABE=\Delta HBE\left(ch-gn\right)\)

    b) Vì \(\Delta ABE=\Delta HBE\left(cmt\right)\)

    Suy ra: AB = AH (hai cạnh tương ứng)

    Ta có: \(\Delta ABH\) cân tại B nên đường phân giác xuất phát từ B đồng thời là đường trung trực của cạnh đối diện

    Do đó: BE là đường trung trực của AH

    c) Xét hai tam giác vuông AKE và CHE có:

    EA = EH (\(\Delta ABE=\Delta HBE\))

    \(\widehat{AEK}\) = \(\widehat{CEH}\) (đối đỉnh)

    Vậy: \(\Delta AKE=\Delta CHE\left(cgv-gn\right)\)

    Suy ra: EK = EC (hai cạnh tương ứng)

    d) Vì \(\Delta EHC\) vuông tại H

    nên EH < EC (cạnh góc vuông nhỏ hơn cạnh huyền)

    Mà AE = EH (\(\Delta ABE=\Delta HBE\))

    Do đó: AE < EC (đpcm).

      bởi nguyễn đình Tuấn 08/05/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)