YOMEDIA
NONE

Cho hình chóp D.ABC có \(DA \bot mp(ABC),\) đáy ABC là tam giác vuông tại B. Đặt AB = c, BC = a, AD = b. Bán kính mặt cầu ngoại tiếp hình chóp bằng:

\(\eqalign{  & (A)\;{1 \over 3}\sqrt {{a^2} + {b^2} + {c^2}} ;  \cr  & (B)\;{1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} ;  \cr  & (C)\;\sqrt {{a^2} + {b^2} + {c^2}} ;  \cr  & (D)\;2\sqrt {{a^2} + {b^2} + {c^2}} . \cr} \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Chọn (B).

    Ta có: \(\left\{ \begin{array}{l}CB \bot AB\\CB \bot DA\end{array} \right.\)\( \Rightarrow CB \bot \left( {DAB} \right) \Rightarrow CB \bot DB\)

    Gọi \(I\) là trung điểm của \(CD\).

    Dễ thấy các tam giác \(DAC,DBC,ABC\) vuông có cạnh huyền \(DC\) nên \(ID = IC = IA = IB\)

    Do đó \(I\) là tâm mặt cầu ngoại tiếp tứ diện \(ABCD\).

    Ta có:

    \(\begin{array}{l}IA = \frac{1}{2}DC = \frac{1}{2}\sqrt {D{A^2} + A{C^2}} \\ = \frac{1}{2}\sqrt {D{A^2} + A{B^2} + B{C^2}} \\ = \frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}} \end{array}\)

      bởi Anh Trần 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON