ADMICRO

Giải hệ phương trình \(\left\{\begin{matrix} x\sqrt{1-97y^2}+y\sqrt{1-97x^2}=\sqrt{97}(x^2+y^2)\\ 27\sqrt{x}+8\sqrt{y}=\sqrt{97}

Hôm nay thầy em giao bài này về nhà mà em không có biết làm, mn giúp em vs!

Giải hệ phương trình \(\left\{\begin{matrix} x\sqrt{1-97y^2}+y\sqrt{1-97x^2}=\sqrt{97}(x^2+y^2)\\ 27\sqrt{x}+8\sqrt{y}=\sqrt{97} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{matrix}\right.(x,y\in R)\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Điều kiện \(0\leq x,y\leq \frac{1}{\sqrt{97}}\)
    Thay (x; y) bằng một trong các cặp số \((0;0),(0;\frac{1}{\sqrt{97}})(\frac{1}{\sqrt{97}};0),(\frac{1}{\sqrt{97}};\frac{1}{\sqrt{97}})\) vào hệ (1) vào (2) ta thấy các cặp này đều không là nghiệm.
    Do đó \(0< x,y< \frac{1}{\sqrt{97}}\)

    Đặt \(\sqrt{97}x=a,\sqrt{97}y=b\). Do \(0< x,y< \frac{1}{\sqrt{97}}\) nên \(0< a,b< 1\)
    Khi đó (1) trở thành \(a\sqrt{1-b^2}+b\sqrt{1-a^2}=a^2+b^2\Leftrightarrow a(a-\sqrt{1-b^2})+b(b-\sqrt{1-a^2})=0\)
    \(\Leftrightarrow (a^2+b^2-1)\left ( \frac{a}{a+\sqrt{1-b^2}}+\frac{b}{b+\sqrt{1-a^2}} \right )=0\Leftrightarrow a^2+b^2=1\)
    Suy ra \(x^2+y^2=\frac{1}{97}\)

    Với các số dương \(a_1,a_2,b_1,b_2\) ta có \(a_1b_1+a_2,b_2\leq \sqrt{a^2_1+a^2_2}.\sqrt{b^2_1+b^2_2}\)
    Đẳng thức xảy ra khi và chỉ khi \(a_1b_2+a_2,b_1\). Thật vậy
    \(a_1b_1+a_2,b_2\leq \sqrt{a^2_1+a^2_2}.\sqrt{b^2_1+b^2_2}\Leftrightarrow (a_1b_1+a_2b_2)^2\leq (a^2_1+a^2_2)(b_1^2+b_2^2)\)
    \(\Leftrightarrow (a_1b_2-a_2b_1)^2\geq 0\)
    Do đó \(27\sqrt{x}+8\sqrt{y}\leq \sqrt{97}\sqrt{9x+4y}\leq \sqrt{97} \sqrt{\sqrt{97}\sqrt{x^2+y^2}}=\sqrt{97}\)

    (Do \(x^2+y^2=\frac{1}{97}\))
    Đẳng thức xảy ra khi và chỉ khi 4x = 9y và \(x^2+y^2=\frac{1}{97}\)
    Do đó \(\Leftrightarrow \left\{\begin{matrix} x^2+y^2=\frac{1}{97}\\ 4x=9y \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{9}{97}\\ \\ y=\frac{4}{97} \end{matrix}\right.\)
    Đối chiếu với điều kiện ta được nghiệm của hệ phương trình đã cho là \((x;y)=\left ( \frac{9}{97};\frac{4}{97} \right )\)

      bởi Lê Nguyễn Hạ Anh 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)