Giải hệ phương trình \(\left\{\begin{matrix} 4x^2=(\sqrt{x^2+1}+1)(x^2-y^3+3y-2)
Giải hệ phương trình \(\left\{\begin{matrix} 4x^2=(\sqrt{x^2+1}+1)(x^2-y^3+3y-2)\\ (x^2+y^2)^2+2014y^2+2015=x^2+4030y \end{matrix}\right.\)
Trả lời (1)
-
\(\left\{\begin{matrix} 4x^2=(\sqrt{x^2+1}+1)(x^2-y^3+3y-2)\\ (x^2+y^2)^2+2014y^2+2015=x^2+4030y \end{matrix}\right.\) (2)
Từ PT (2), ta có \((x^2+y^2)^2-(x^2+y^2)=-2015(y-1)^2\leq 0\Leftrightarrow 0\leq x^2+y^2\leq 1\)
Do đó \(|x| \leq 1; |y| \leq 1\)+ Nếu \(\sqrt{x^2+1}-1=0\Leftrightarrow x=0\) thay vào HPT, ta được:
\(\left\{\begin{matrix} -y^3+3y-2=0\\ y^4+2014y^2+2015=4030y \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(y-1)^2(y+2)=0\\ y^4+2014y^2+2015=4030y \end{matrix}\right.\)
\(\Leftrightarrow y=1(do\ \left | y \right |\leq 1)\)
Như vậy (x;y) = (0;1) là một nghiệm của HPT đã cho.
+ Nếu \(\sqrt{x^2+1}-1\neq 0\Leftrightarrow x\neq 0\) nhân hai vế của PT (1) với \(\sqrt{x^2+1}-1\), ta được
\((1)\Leftrightarrow 4x^2(\sqrt{x^2+1}-1)=x^2(x^2-y^3+3y-2)\)
\(\Leftrightarrow 4(\sqrt{x^2+1}-1)=x^2-y^3+3y-2\)
\(\Leftrightarrow x^2+1-4\sqrt{x^2+1}+3=y^3-3y+2\)
\(\Leftrightarrow 4(\sqrt{x^2+1}-1)(\sqrt{x^2+1-3})=(y+3)(y-1)^2\)
Với \(x\neq 0;\left | x \right |\leq 1;\left | y \right |\leq 1\), ta có \(\sqrt{x^2+1}-1> 0;\sqrt{x^2+1}-3;(y+2)(y-1)^2\)Nên \((\sqrt{x^2+1}-1)(\sqrt{x^2+1}-3)< 0\leq (y+2)(y-1)^2\) , từ đó PT (3) vô nghiệm
Đối chiếu với điều kiện ta thấy (x;y)=(0;1) là nghiệm của HPT đã cho.bởi Nguyễn Anh Hưng
09/02/2017
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
x(x-3)-(3-x)2=27
25/11/2022 | 1 Trả lời
-
Có bao nhiêu cách chia 9 người làm 3 nhóm, mỗi nhóm 3 người?
26/11/2022 | 2 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời



