YOMEDIA
NONE
  • Câu hỏi:

    Xét các số thực \(x,\,\,y\) với \(x\ge 0\) thỏa mãn điều kiện:\({{2018}^{x\,+\,3y}}+{{2018}^{xy\,+\,1}}+x+1={{2018}^{-\,xy\,-\,1}}+\frac{1}{{{2018}^{x\,+\,3y}}}-y\left( x+3 \right)\)Gọi \(m\) là giá trị nhỏ nhất của biểu thức \(T=x+2y.\) Mệnh đề nào sau đây đúng ? 

    • A. \(m\in \left( -\,1;0 \right).\)  
    • B. \(m\in \left( 0;1 \right).\)  
    • C. \(m\in \left( 2;3 \right).\)   
    • D. \(m\in \left( 1;2 \right).\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Giả thiết \(\Leftrightarrow \,\,{{2018}^{x\,+\,3y}}-\frac{1}{{{2018}^{x\,+\,3y}}}+x+3y={{2018}^{-\,xy\,-\,1}}-\frac{1}{{{2018}^{-\,xy\,-\,1}}}-xy-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right).\)

    Xét hàm số \(f\left( t \right)={{2018}^{t}}-{{2018}^{-\,t}}+t\) trên R, có \({f}'\left( t \right)={{2018}^{t}}.\ln 2018+{{2018}^{-\,t}}.\ln 2018+1>0\)

    Suy ra \(f\left( t \right)\) là hàm số đồng biến trên R mà \(\left( * \right)\Leftrightarrow f\left( x+3y \right)=f\left( -xy-1 \right)\Leftrightarrow x+3y=-\,xy-1.\)

    \(\Leftrightarrow x+1=-\,\left( x+3 \right)y\Leftrightarrow y=-\frac{x+1}{x+3}.\) Khi đó \(T=x+2y=x-\frac{2x+2}{x+3}=\frac{{{x}^{2}}+x-2}{x+3}.\)

    Xét hàm số \(g\left( x \right)=\frac{{{x}^{2}}+x-2}{x+3}\) trên khoảng \(\left[ 0;+\,\infty  \right),\) có \({g}'\left( x \right)=\frac{{{x}^{2}}+6x+5}{{{\left( x+3 \right)}^{2}}}>0;\,\,\forall x\ge 0.\)

    Do đó, \(g\left( x \right)\) là hàm số đồng biến trên \(\left[ 0;+\,\infty  \right)\,\,\xrightarrow{{}}\,\,\underset{\left( 0;+\,\infty  \right)}{\mathop{\min }}\,g\left( x \right)=g\left( 0 \right)=-\,\frac{2}{3}\in \left( -\,1;0 \right).\)

    Chọn A.

    ATNETWORK

Mã câu hỏi: 357138

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON