YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y=\frac{2x}{x+2},\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x}_{0}};{{y}_{0}} \right)\in \left( C \right),\) với \({{x}_{0}}\ne 0.\) Biết khoảng cách từ điểm \(I\left( -\,2;2 \right)\) đến tiếp tuyến của \(\left( C \right)\) tại \(M\) là lớn nhất, mệnh đề nào sau đây đúng? 

    • A. \({{x}_{0}}+2{{y}_{0}}=-\,4.\) 
    • B. \({{x}_{0}}+2{{y}_{0}}=2.\)    
    • C. \({{x}_{0}}+2{{y}_{0}}=-\,2.\) 
    • D. \({{x}_{0}}+2{{y}_{0}}=0.\)  

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có \({y}'=\frac{4}{{{\left( x+2 \right)}^{2}}}\Rightarrow {y}'\left( {{x}_{0}} \right)=\frac{4}{{{\left( {{x}_{0}}+2 \right)}^{2}}}\) và \(y\left( {{x}_{0}} \right)=\frac{2{{x}_{0}}}{{{x}_{0}}+2}\) nên phương trình tiếp tuyến là

    \(\left( d \right):y-y\left( {{x}_{0}} \right)={y}'\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)\Leftrightarrow y=\frac{4}{{{\left( {{x}_{0}}+2 \right)}^{2}}}\left( x-{{x}_{0}} \right)+\frac{2{{x}_{0}}}{{{x}_{0}}+2}\Leftrightarrow \frac{4}{{{\left( {{x}_{0}}+2 \right)}^{2}}}x-y+\frac{2x_{0}^{2}}{{{\left( {{x}_{0}}+2 \right)}^{2}}}=0.\)

    Khoảng cách từ điểm \(I\left( -\,2;2 \right)\) đến \(\left( d \right)\) là \(d\left( I;\left( d \right) \right)=\frac{\left| 8{{x}_{0}}+16 \right|}{\sqrt{{{\left( {{x}_{0}}+2 \right)}^{4}}+16}}=\frac{8\left| {{x}_{0}}+2 \right|}{\sqrt{{{\left( {{x}_{0}}+2 \right)}^{4}}+16}}\)

    Đặt \(t=\left| {{x}_{0}}+2 \right|\,\,\left( t\ge 0 \right)\Rightarrow d\left( I;\left( d \right) \right)=\frac{8t}{\sqrt{{{t}^{4}}+16}}\)

    Xét hàm số \(f\left( t \right)=\frac{t}{\sqrt{{{t}^{4}}+16}}\) trên \(\left( 0;+\infty  \right)\) ta có

    \(\begin{array}{l}
    f'\left( t \right) = \frac{{\sqrt {{t^4} + 16} - \frac{{t.4{t^3}}}{{2\sqrt {{t^4} + 16} }}}}{{{t^4} + 16}} = \frac{{{t^4} + 16 - 2{t^4}}}{{\left( {{t^4} + 16} \right)\sqrt {{t^4} + 16} }} = \frac{{16 - {t^4}}}{{\left( {{t^4} + 16} \right)\sqrt {{t^4} + 16} }} = 0 \Leftrightarrow \left[ \begin{array}{l}
    t = 2\,\,\left( {tm} \right)\\
    t = - 2\,\,\left( {ktm} \right)
    \end{array} \right.\\
    f\left( 0 \right) = 0\\
    f\left( 2 \right) = \frac{{\sqrt 2 }}{4}\\
    \Rightarrow \mathop {\max }\limits_{\left[ {0; + \infty } \right)} f\left( t \right) = \frac{{\sqrt 2 }}{4} \Leftrightarrow f\left( t \right) \le \frac{{\sqrt 2 }}{4}\\
    \Rightarrow d\left( {I;\left( d \right)} \right) \le 8.\frac{{\sqrt 2 }}{4} = 2\sqrt 2
    \end{array}\)

    Dấu « = » xảy ra

    \(\begin{array}{l}
    \Leftrightarrow t = 2 \Leftrightarrow \left| {{x_0} + 2} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}
    {x_0} = 0\,\,\left( {ktm} \right)\\
    {x_0} = - 4\,\,\left( {tm} \right)
    \end{array} \right. \Rightarrow {y_0} = \frac{{2.\left( { - 4} \right)}}{{ - 4 + 2}} = 4\\
    \Rightarrow 2{x_0} + {y_0} = 2.\left( { - 4} \right) + 4 = - 4
    \end{array}\)

    Chọn A.

    ATNETWORK

Mã câu hỏi: 357136

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON