YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { - 2;1;3} \right)\), \(C\left( {2; - 1;3} \right)\) và \(D\left( {0;3;1} \right)\). Phương trình mặt phẳng \(\left( \alpha  \right)\) đi qua \(A,B\) đồng thời cách đều \(C,D\)

    • A. \(\left( {{P_1}} \right):4x + 2y + 7z - 15 = 0;\)\(\,\left( {{P_2}} \right):x - 5y - z + 10 = 0\). 
    • B. \(\left( {{P_1}} \right):6x - 4y + 7z - 5 = 0;\)\(\,\left( {{P_2}} \right):3x + y + 5z + 10 = 0\). 
    • C. \(\left( {{P_1}} \right):6x - 4y + 7z - 5 = 0;\)\(\,\left( {{P_2}} \right):2x + 3z - 5 = 0\).
    • D. \(\left( {{P_1}} \right):3x + 5y + 7z - 20 = 0;\)\(\,\left( {{P_2}} \right):x + 3y + 3z - 10 = 0\). 

    Lời giải tham khảo:

    Đáp án đúng: D

    Trường hợp 1:\(CD//\left( P \right)\)

    \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 6; - 10; - 14} \right)\)\(\, =  - 2\left( {3;5;7} \right)\)

    \( \Rightarrow \left( P \right):3x + 5y + 7z - 20 = 0\)

    Trường hợp 2:\(\left( P \right)\) đi qua trung điểm \(I\left( {1;1;2} \right)\) của \(CD\)

    \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AI} } \right] = \left( {1;3;3} \right) \)

    \(\Rightarrow \left( P \right):x + 3y + 3z - 10 = 0\).

    ATNETWORK

Mã câu hỏi: 342375

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON