YOMEDIA
NONE
  • Câu hỏi:

    Có tất cả bao nhiêu giá trị nguyên của m để phương trình \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân  biệt ?

    • A. 31    
    • B. 32    
    • C. 21  
    • D.

    Lời giải tham khảo:

    Đáp án đúng: A

    \({x^3} - 6{x^2} + m = 0 \Leftrightarrow {x^3} - 6{x^2} =  - m\)

    Số nghiệm của phương trình \({x^3} - 6{x^2} + m = 0\) chính là số giao điểm của đường thẳng y= -m và đths \(y = {x^3} - 6{x^2}\)

    Xét \(y = {x^3} - 6{x^2}\)

    TXĐ: \(D = \mathbb{R}\)

    \(\begin{array}{l}y' = 3{x^2} - 12x\\y' = 0 \Leftrightarrow 3{x^2} - 12x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\end{array}\)

    Từ  BBT, pt \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow \)  đường thẳng y= -m cắt đths \(y = {x^3} - 6{x^2}\) tại 3 điểm \( \Leftrightarrow \) \(\begin{array}{l} - 32 <  - m < 0 \Rightarrow \left\{ \begin{array}{l}0 < m < 32\\m \in \mathbb{Z}\end{array} \right.\\\end{array}\)

    \( \Leftrightarrow \) có 31 giá trị của m

    ATNETWORK

Mã câu hỏi: 342492

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON