YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian Oxyz, cho tứ diện ABCD với \(A\left( {1;6;2} \right),B\left( {5;1;3} \right),C\left( {4;0;6} \right),D\left( {5;0;4} \right)\). Viết phương trình mặt cầu (S) có tâm D và tiếp xúc với mặt phẳng (ABC).

    • A. \({\left( {x + 5} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = \frac{8}{{223}}\)
    • B. \({\left( {x - 5} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = \frac{{16}}{{223}}\)
    • C. \({\left( {x - 5} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = \frac{{16}}{{223}}\)
    • D. \({\left( {x - 5} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = \frac{8}{{223}}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \(\overrightarrow{AB}=\left( 4;-5;1 \right), \overrightarrow{AC}=\left( 3;-6;4 \right)\) và \(\left[ \overrightarrow{AB},\overrightarrow{AC} \right]=\left( -14;-13;-9 \right)\).

    Suy ra phương trình mặt phẳng \(\left( ABC \right)\) là

    \(-14\left( x-1 \right)-13\left( y-6 \right)-9\left( z-2 \right)=0\Leftrightarrow 14x+13y+9z-110=0\).

    Bán kính mặt cầu \(\left( S \right)\) là \(R=\text{d}\left( D,\left( ABC \right) \right)=\frac{4}{\sqrt{446}}\).

    Vậy phương trình mặt cầu là \({{\left( x-5 \right)}^{2}}+{{y}^{2}}+{{\left( z-4 \right)}^{2}}=\frac{8}{223}\).

    ATNETWORK

Mã câu hỏi: 258198

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON