YOMEDIA
NONE
  • Câu hỏi:

    Tìm m để phương trình \({4^x} - 2\left( {m - 1} \right){.2^x} + 3m - 4 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + {x_2} > 2\).

    • A. \(m \in \left( {\frac{{5 + \sqrt 5 }}{2}; + \infty } \right)\)
    • B. \(m \in \left( {\frac{8}{3};\frac{{5 + \sqrt 5 }}{2}} \right)\)
    • C. \(m \in \left( {\frac{4}{3};\frac{{5 - \sqrt 5 }}{2}} \right) \cup \left( {\frac{{5 + \sqrt 5 }}{2}; + \infty } \right)\)
    • D. \(m \in \left( {1;\frac{4}{3}} \right)\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Đặt t = 2x, điều kiện t > 0. Bài toán trở thành tìm m để phương trình \({t^2} - 2\left( {m - 1} \right)t + 3m - 4 = 0\) có hai nghiệm phân biệt \({t_1},\,\,{t_2}\) dương thỏa mãn \({t_1}{t_2} > 4\). Điều kiện tương đương là

    \(\left\{ \begin{array}{l} \Delta ' = {\left( {m - 1} \right)^2} - \left( {3m - 4} \right) > 0\\ {t_1} + {t_2} = m - 1 > 0\\ {t_1}{t_2} = 3m - 4 > 4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {m^2} - 5m + 5 > 0\\ m > 1\\ m > \frac{8}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m < \frac{{5 - \sqrt 5 }}{2}\\ m > \frac{{5 + \sqrt 5 }}{2} \end{array} \right.\\ m > \frac{8}{3} \end{array} \right. \Leftrightarrow m > \frac{{5 + \sqrt 5 }}{2}\).

    Vậy giá trị m cần tìm là \(m \in \left( {\frac{{5 + \sqrt 5 }}{2}; + \infty } \right)\).

    ATNETWORK

Mã câu hỏi: 258178

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON