YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian Oxyz, cho ba điểm \(A\left( 1;1;1 \right),B\left( -1;2;0 \right),C\left( 3;-1;2 \right)\). Điểm \(M\left( a;b;c \right)\) thuộc đường thẳng \(\Delta :\frac{x-1}{2}=\frac{y}{1}=\frac{z+1}{-1}\) sao cho biểu thức \(P=2M{{A}^{2}}+3M{{B}^{2}}-4M{{C}^{2}}\) đạt giá trị nhỏ nhất. Tính a+b+c.

    • A. \(\frac{5}{3}\)
    • B. 0
    • C. \( - \frac{{11}}{3}\)
    • D. \( - \frac{{16}}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi \(D\left( x;y;z \right)\) sao cho \(2\overrightarrow{DA}+3\overrightarrow{DB}-4\overrightarrow{DC}=\overrightarrow{0}\). Ta tìm được \(D\left( -13;12;-6 \right)\).

    Khi đó,

    \(\begin{align} & P=2{{\left( \overrightarrow{MD}+\overrightarrow{DA} \right)}^{2}}+3{{\left( \overrightarrow{MD}+\overrightarrow{DB} \right)}^{2}}-4{{\left( \overrightarrow{MD}+\overrightarrow{DC} \right)}^{2}} \\ & \,\,\,\,\,=M{{D}^{2}}+2D{{A}^{2}}+3D{{B}^{2}}-4D{{C}^{2}}. \\ \end{align}\)

    Do đó, P nhỏ nhất khi và chỉ khi MD nhỏ nhất. Tức M là hình chiếu vuông góc của D trên \(\Delta \).  

    Ta có \(M\in \Delta \) nên \(M\left( 1+2t;t;-1-t \right)\) \(\overrightarrow{DM}=\left( 14+2t;t-12;5-t \right)\).

    Đường thẳng \(\Delta \) có véc-tơ chỉ phương \(\overrightarrow{u}=\left( 2;1;-1 \right)\).

    Vì \(\overrightarrow{DM}\bot \overrightarrow{u}\) nên \(28+4t+t-12-\left( 5-t \right)=0\Leftrightarrow 6t+11=0\Leftrightarrow t=-\frac{11}{6}\).

    Suy ra \(M\left( -\frac{8}{3};-\frac{11}{6};\frac{5}{6} \right)\).Vậy \(a+b+c=-\frac{11}{3}\).

    ATNETWORK

Mã câu hỏi: 258200

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON