YOMEDIA
NONE
  • Câu hỏi:

    Trên cùng mặt phẳng tọa độ Oxy cho ba đường thẳng \(y = x + 2;\;y = 2x + 1\) và \(y = \left( {{m^2} - 1} \right)x - 2m + 1.\) Tìm giá trị của m để ba đường thẳng cùng đi qua một điểm.

    • A. \(m =  - 3\)    
    • B. \(m \in \left\{ { - 3;\;1} \right\}\)   
    • C. \(m \in \left\{ { - 1;\;3} \right\}\)   
    • D. \(m = 1\)  

    Lời giải tham khảo:

    Đáp án đúng: C

    Tọa độ giao điểm của hai đường thẳng \(y = x + 2;\;y = 2x + 1\) là nghiệm của hệ phương trình:

    \(\left\{ \begin{array}{l}y = x + 2\\y = 2x + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = x + 2\\x + 2 = 2x + 1\end{array} \right. \)

    \(\Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right. \Rightarrow A\left( {1;\;3} \right).\)

    Để bai đường thẳng đã cho cùng đi qua một điểm thì đường thẳng \(y = \left( {{m^2} - 1} \right)x - 2m + 1\) phải đi qua điểm \(A\left( {1;\;\;3} \right).\) Khi đó ta có:

    \(\begin{array}{l}3 = \left( {{m^2} - 1} \right).1 - 2m + 1\\ \Leftrightarrow {m^2} - 2m - 3 = 0\\ \Leftrightarrow \left( {m + 1} \right)\left( {m - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m + 1 = 0\\m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\\m = 3\end{array} \right..\end{array}\) 

    Vậy \(m \in \left\{ { - 1;\;\;3} \right\}.\) 

    Chọn C.

    ATNETWORK

Mã câu hỏi: 382093

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON