-
Câu hỏi:
Đường kính của một khối cầu bằng cạnh của một khối lập phương. Gọi V1 là thể tích khối lập phương, V2 là thể tích khối cầu. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).
- A. \(\frac{4}{3}\pi\)
- B. \(\frac{1}{6}\pi\)
- C. \(\frac{6}{\pi }\)
- D. \(\frac{3}{{4\pi }}\)
Đáp án đúng: C
Ta có công thức:
\({V_1} = {a^3}\)
\({V_2} = \frac{4}{3}\pi {R^3} = \frac{4}{3}.\pi .{\left( {\frac{a}{2}} \right)^3} = \frac{\pi }{6}{a^3}\)
\(\Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{6}{\pi }\)
Vậy đáp án đúng là C.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ MẶT CẦU, DIỆN TÍCH MẶT CẦU, THỂ TÍCH KHỐI CẦU
- Tìm bán kính R của mặt cầu ngoại tiếp đa diện AHKBC biết hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và SA vuông góc với đáy H và K là hình chiếu vuông góc của A lên SB và SC
- Cho mặt cầu tâm O có bán kính R=13 tính khoảng cách từ O đến mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn đi qua A B C với AB=6 BC=8 CA=10
- Tìm bán kính mặt cầu ngoại tiếp hình chóp S.AMD biết S.ABCD có đáy ABCD là hình chữ nhật có AD=2a AB=a cạnh bên SA= và vuông góc với mặt phẳng đáy (ABCD) M là trung điểm BC
- Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC biết SA=a, SB=B, SC=c và SA, SB, SC đôi một vuông góc
- Tìm tâm mặt cầu ngoại tiếp hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy
- Tìm bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC có SA vuông góc mặt phẳng (ABC) và tam giác ABC vuông tại B
- Tìm bán kính R của mặt cầu ngoại tiếp hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a
- Tính diện tích S của mặt cầu có đường kính bằng 2a
- Tính diện tích S của mặt cầu sinh bởi đường tròn ngoại tiếp tam giác vuông cân khi quay quanh cạnh huyền
- Bất kì một tứ diện nào cũng có mặt cầu ngoại tiếp