YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị của m để hàm số \(y = \dfrac{{mx + 16}}{{x + m}}\) nghịch biến trên \(\left( {0;10} \right)\)

    • A. \(m \in \left[ { - 4;0} \right]\)
    • B. \(m \in \left( { - 4;4} \right)\) 
    • C. \(m \in \left( { - \infty ; - 10} \right] \cup \left( {4; + \infty } \right)\)
    • D. \(m \in \left[ {0;4} \right)\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    \(y' = \dfrac{{{m^2} - 16}}{{{{\left( {x + m} \right)}^2}}}\), \(y' < 0 \Leftrightarrow {m^2} - 16 < 0 \Leftrightarrow  - 4 < m < 4\)

    Khi đó hàm số nghịch biến trên \(\left( { - m; + \infty } \right)\) và \(\left( { - \infty ; - m} \right)\).

    Hàm số nghịch biến trên \(\left( {0;10} \right)\)

    \(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\left( {0;10} \right) \subset \left( { - m; + \infty } \right)\\\left( {0;10} \right) \subset \left( { - \infty ; - m} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}0 \ge  - m\\10 \le  - m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m \ge 0\\m \le  - 10\end{array} \right.\end{array}\).

    Kết hợp với điều kiện \( - 4 < m < 4\) ta được \(0 \le m < 4\)

    Chọn D

    ATNETWORK

Mã câu hỏi: 319769

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON