YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \({\left( {{{\log }_3}x} \right)^2} + 3m{\log _3}\left( {3x} \right) + 2{m^2} - 2m - 1 = 0\). Gọi S là tập hợp tất cả các số tự nhiên m mà phương trình có 2 nghiệm phân biệt \({{\rm{x}}_1},{x_2}\) thỏa mãn \({x_1} + {x_2} < \dfrac{{10}}{3}\). Số phần tử của S là

    • A. 1
    • B. 0
    • C. 10
    • D. Vô số

    Lời giải tham khảo:

    Đáp án đúng: D

    Đặt \(t = {\log _3}x \Rightarrow x = {3^t}\)

    Phương trình trở thành

    \(\begin{array}{l}{t^2} + 3m\left( {1 + t} \right) + 2{m^2} - 2m - 1 = 0\\ \Leftrightarrow {t^2} + 3mt + 2{m^2} + m - 1 = 0\\{\Delta _t} = {\left( {m - 2} \right)^2}\\ \Rightarrow \left\{ \begin{array}{l}{t_1} =  - m - 1\\{t_2} =  - 2m + 1\end{array} \right.\end{array}\)

    \({t_1} = {\log _3}{x_1};{t_2} = {\log _3}{x_2}\)

    \(\begin{array}{l}{x_1} + {x_2} < \dfrac{{10}}{3} \Leftrightarrow {3^{ - m - 1}} + {3^{ - 2m + 1}} < \dfrac{{10}}{3}\\ \Leftrightarrow \dfrac{{{3^{ - m}}}}{3} + 3.{\left( {{3^{ - m}}} \right)^2} < \dfrac{{10}}{3}\left( 1 \right)\end{array}\)

    Đặt \({3^{ - m}} = u > 0\)

    \(\begin{array}{l}\left( 1 \right) \Leftrightarrow 3{u^2} + \dfrac{u}{3} - \dfrac{{10}}{3} < 0 \Leftrightarrow \dfrac{{ - 10}}{9} < u < 1\\ \Leftrightarrow \dfrac{{ - 10}}{9} < {3^{ - m}} < 1 \Leftrightarrow  - m < 0 \Leftrightarrow m > 0\end{array}\)

    Để phương trình có 2 nghiệm phân biệt thì \({\Delta _t} > 0 \Leftrightarrow m \ne 2\). Vậy S có vô số phần tử.

    Chọn D

    ATNETWORK

Mã câu hỏi: 319632

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON