YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \(AD = a\), \(AB = a\sqrt 3 \). Cạnh bên SA vuông góc với đáy và SA=2a. Tính khoảng cách d từ điểm C đến mặt phẳng (SBD).

    • A.  \({\rm{d}} = \dfrac{{2{\rm{a}}}}{{\sqrt 5 }}\)  
    • B. \({\rm{d}} = \dfrac{{a\sqrt {57} }}{{19}}\)
    • C. \({\rm{d}} = \dfrac{{2a\sqrt {57} }}{{19}}\)  
    • D. \(d = \dfrac{{a\sqrt 5 }}{2}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(AC\) cắt \(\left( {SBD} \right)\) tại trung điểm I của AC

    \( \Rightarrow \dfrac{{d\left( {A,\left( {SBD} \right)} \right)}}{{d\left( {C,\left( {SBD} \right)} \right)}} = \dfrac{{IA}}{{IC}} = 1\)

    Kẻ \(AH \bot BD,AK \bot SH\)

    \(\begin{array}{l} \Rightarrow BD \bot \left( {SAH} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAH} \right)\\AK \bot SH = \left( {SBD} \right) \cap \left( {SAH} \right)\\ \Rightarrow AH \bot \left( {SBD} \right)\end{array}\)

    Ta có \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{D^2}}} = \dfrac{1}{{3{a^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{4}{{3{a^2}}}\)

    \(\begin{array}{l}\dfrac{1}{{A{K^2}}} = \dfrac{1}{{A{H^2}}} + \dfrac{1}{{S{A^2}}} = \dfrac{4}{{3{a^2}}} + \dfrac{1}{{4{a^2}}} = \dfrac{{19}}{{12{a^2}}}\\ \Rightarrow AK = \dfrac{{2a\sqrt {57} }}{{19}}\end{array}\)

    Chọn C

    ATNETWORK

Mã câu hỏi: 319608

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON