YOMEDIA
UREKA
  • Câu hỏi:

    Tìm tập nghiệm S của bất phương trình \({\log _2}\left( {1 + {3^x}} \right) + {\log _{\left( {1 + {3^x}} \right)}}2 - 2 > 0\).

    • A.  \(S=\left( {0, + \infty } \right)\)
    • B.  \(S=\left( { - \infty ,0} \right)\)
    • C.  \(S=\mathbb{R}\backslash \left\{ 0 \right\}\)
    • D.  \(S=\mathbb{R}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    \(\begin{array}{l} {\log _2}\left( {1 + {3^x}} \right) + {\log _{\left( {1 + {3^x}} \right)}}2 - 2 > 0\\ \Leftrightarrow {\log _2}\left( {1 + {3^x}} \right) + \frac{1}{{{{\log }_2}\left( {1 + {3^x}} \right)}} - 2 > 0\\ \Leftrightarrow {\log _2}^2\left( {1 + {3^x}} \right) - 2{\log _2}\left( {1 + {3^x}} \right) + 1 > 0\\ \Leftrightarrow {\left[ {{{\log }_2}\left( {1 + {3^x}} \right) - 1} \right]^2} > 0\\ \Leftrightarrow {\log _2}\left( {1 + {3^x}} \right) - 1 \ne 0\\ \Leftrightarrow 1 + {3^x} \ne 2 \Leftrightarrow x \ne 0 \end{array}\)

    ADSENSE

Mã câu hỏi: 1534

Loại bài: Bài tập

Chủ đề : Mũ và lôgarit

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ADMICRO
 

 

YOMEDIA
ON