-
Câu hỏi:
Giải bất phương trình \({9^x} - {\log _2}8 < {2.3^x}.\)
- A. x>0
- B. x<0
- C. x>1
- D. x<1
Lời giải tham khảo:
Đáp án đúng: D
\({9^x} - {\log _2}8 < {2.3^x} \)
\(\Leftrightarrow {\left( {{3^x}} \right)^2} - {2.3^x} - 3 < 0\)
Đặt: \(t=3^x,t>0.\) Bất phương trình trở thành:
\(3{t^2} - 2t - 3 < 0 \Leftrightarrow - 1 < t < 3\)
Kết hợp với điều kiện: \(0 < t < 3 \Rightarrow {3^x} < 3 \Leftrightarrow x < 1.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Giải bất phương trình \({9^x} - {\log _2}8 < {2.3^x}.\)
- Tìm tập nghiệm S của bất phương trình: \({2^{{x^2} - x + 1}} > {4^{x + 1}}.\)
- Giải bất phương trình \({5^{x + 2}} - {2^{x + 4}} > {5^{x + 1}} - {2^{x + 2}} + {2^{x + 3}}.\)
- Tìm tập nghiệm S của bất phương trình \(2{\log _3}\left( {4x - 3} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) \le 2.\)
- Giải bất phương trình \({\log _{\frac{1}{2}}}^2x + 3{\log _{\frac{1}{2}}}x + 2 \le 0\).
- Tìm tập nghiệm S của bất phương trình \({6^{2x + 3}} < {2^{4x - 5}}{.3^{4x - 5}}\).
- Giải bất phương trình \({\left( {\sqrt[3]{x} + 1} \right)^5} + \sqrt[3]{x}{.2^{x - 1}} \ge 1.\)
- Tìm tập nghiệm S của bất phương trình \({\log _3}\sqrt {{x^2} - 5x + 6} + {\log _{\frac{1}{3}}}\sqrt {x - 2} \) \(> \frac{1}{2}{\log _{\frac{1}{3}}}\left( {x + 3} \right).\)
- Giải bất phương trình \(x + {\log _3}\left( {x + 1} \right) > 3.\)
- Tìm tập nghiệm S của bất phương trình {log _2}left( {1 + {3^x}} ight) Tìm tập nghiệm S của bất phương trình \({\log _2}\left( {1 + {3^x}} \right) + {\log _{\left( {1 + {3^x}} \right)}}2 - 2 > 0\).+ {log _{left( {1 + {3^x}} ight)}}2 - 2 > 0