-
Câu hỏi:
Tìm bốn số hạng liên tiếp của một CSC biết tổng của chúng bằng \(20\) và tổng các bình phương của chúng bằng \(120^0\)?
- A. \(1,5,6,8\)
- B. \(2,4,6,8\)
- C. \(1,4,6,9\)
- D. \(1,4,7,8\)
Lời giải tham khảo:
Đáp án đúng: B
Giả sử bốn số hạng đó là \(a - 3x;a - x;a + x;a + 3x\) với công sai là \(d = 2x\).Khi đó, ta có:
\(\left\{ {\begin{array}{*{20}{c}}{\left( {a - 3x} \right) + \left( {a - x} \right) + \left( {a + x} \right) + \left( {a + 3x} \right) = 20}\\{{{\left( {a - 3x} \right)}^2} + {{\left( {a - x} \right)}^2} + {{\left( {a + x} \right)}^2} + {{\left( {a + 3x} \right)}^2} = 120}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4a = 20}\\{4{a^2} + 20{x^2} = 120}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 5}\\{x = \pm 1}\end{array}} \right.\)
Vậy bốn số cần tìm là \(2,4,6,8\).
Đáp án B.
CÂU HỎI KHÁC
- Dãy số (\(u_n\)) có phải là cấp số cộng không? Nếu phải hãy xác định số công sai d, biết rằng: \(u_{n} = 2 n+ 3\)?
- Cho một cấp số cộng có \(u_1=−3;u_6=27\). Tìm giá trị của d?
- Cho a, b, c theo thứ tự lập thành cấp số cộng, đẳng thức nào là đúng?
- Tìm công sai d của cấp số cộng (un) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right\)?
- Cho cấp số cộng \((u_n)\) có: \(u_1=−0,1;d=0,1\). Số hạng thứ 7 của CSC này là?
- Tìm bốn số hạng liên tiếp của một CSC biết tổng của chúng bằng \(20\) và tổng các bình phương của chúng bằng \(120^0\)?
- Tam giác \(ABC\) có ba góc \(A,B,C\) theo thứ tự đó lập thành cấp số cộng và \(C = 5A\). Xác định số đo của các góc \(A,B,C\)?
- Xét xem các dãy số \({u_n} = 3n + 1\) có phải là cấp số cộng hay không? Nếu phải hãy xác định công sai của CSC?
- Cho 4 số lập phương thành cấp số cộng. Tổng của chúng bằng 22.
- Cho CSC có 8 số hạng. Số hạng đầu bằng 3, số hạng cuối bằng 24. Tính tổng các số hạng này?