YOMEDIA
NONE
  • Câu hỏi:

    Số các giá trị nguyên dương của tham số m để hàm số \(y=\frac{mx-4}{x-m}\) nghịch biến trên khoảng \(\left( 4;+\infty  \right)\) là

    • A. 1
    • B. 0
    • C. Vô số
    • D. 2

    Lời giải tham khảo:

    Đáp án đúng: D

    \({y'} = \frac{{ - {m^2} + 4}}{{{{\left( {x - m} \right)}^2}}}\)

    Hàm số nghịch biến trên khoảng \(\left( {4; + \infty } \right)\) khi \(\left\{ {\begin{array}{*{20}{c}} { - {m^2} + 4 < 0}\\ {m \le 4} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {m < - 2}\\ {m > 2} \end{array}} \right.}\\ {m \le 4} \end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {m < - 2}\\ {2 < m \le 4} \end{array}} \right.\)

    Các giá trị nguyên dương của m gồm m=3, m=4

    ATNETWORK

Mã câu hỏi: 256803

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON