YOMEDIA
NONE
  • Câu hỏi:

    Cho hình nón có chiều cao bằng 2a. Thiết diện đi qua đỉnh của hình nón cách tâm đường tròn đáy của hình nón một khoảng bằng a là một tam giác đều. Tính thể tích của khối nón giới hạn bởi hình nón đã cho.  

    • A. \(\frac{{56\pi {a^3}}}{{27}}.\)
    • B. \(\frac{{16\pi {a^3}}}{{27}}.\)
    • C. \(\frac{{\pi {a^3}}}{{27}}.\)
    • D. \(\frac{{\pi {a^3}\sqrt 3 }}{{27}}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi thiết diện qua đỉnh hình nón là tam giác đều SAB. Gọi H là trung điểm đoạn AB. Ta có \(\left( SOH \right)\bot \left( SAB \right)\), kẻ \(OI\bot SH\] tại I. Ta có \(OI=d\left( O,\left( SAB \right) \right)=a.\)

    \(\frac{1}{O{{H}^{2}}}=\frac{1}{O{{I}^{2}}}-\frac{1}{O{{S}^{2}}}=\frac{1}{{{a}^{2}}}-\frac{1}{4{{a}^{2}}}=\frac{3}{4{{a}^{2}}}\Rightarrow O{{H}^{2}}=\frac{4{{a}^{2}}}{3}\)

    \(AB=\frac{2SH}{\sqrt{3}}=\frac{8a}{3}\); Bán kính đáy hình nón \(r=OB=\sqrt{O{{H}^{2}}+\frac{A{{B}^{2}}}{4}}=\sqrt{\frac{4{{a}^{2}}}{3}+\frac{16{{a}^{2}}}{9}}=\frac{2a\sqrt{7}}{3}.\)

    \(V=\frac{1}{3}\pi {{r}^{2}}h=\frac{1}{3}\pi \frac{28{{a}^{2}}}{9}.2a=\frac{56\pi {{a}^{3}}}{27}.\)

    ATNETWORK

Mã câu hỏi: 256806

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON