YOMEDIA
NONE
  • Câu hỏi:

    Phương trình \({\log _3}\left( {{x^3} + 3{x^2}} \right) + {\log _{\frac{1}{3}}}\left( {x - {x^2}} \right) = 0\) có bao nhiêu nghiệm thực?

    • A. 0
    • B. 1
    • C. 3
    • D. 2

    Đáp án đúng: B

    Điều kiện: \(\left\{ \begin{array}{l} x - {x^2} > 0\\ {x^3} + 3{x^2} > 0 \end{array} \right. \Leftrightarrow 0 < x < 1.\) Khi đó:

    \({\log _3}\left( {{x^3} + 3{x^2}} \right) + {\log _{\frac{1}{3}}}\left( {x - {x^2}} \right) = 0 \Leftrightarrow {\log _3}\left( {{x^3} + 3{x^2}} \right) - {\log _3}\left( {x - {x^2}} \right) = 0\)

    \(\Leftrightarrow {\log _3}\frac{{\left( {{x^3} + 3{x^2}} \right)}}{{x - {x^2}}} = 0 \Leftrightarrow \frac{{\left( {{x^3} + 3{x^2}} \right)}}{{\left( {x - {x^2}} \right)}} = 1 \Leftrightarrow {x^3} + 3{x^2} = \left( {x - {x^2}} \right)\)

    \(\Leftrightarrow {x^3} + 4{x^2} - x = 0 \Rightarrow \left[ \begin{array}{l} x = 0\left( L \right)\\ x = - 2 + \sqrt 5 \\ x = - 2 - \sqrt 5 \left( L \right) \end{array} \right.\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH LOGARIT BẰNG PHƯƠNG PHÁP ĐƯA VỀ CÙNG CƠ SỐ.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON